Purpose: Electron-based ultra-high dose rate radiation therapy (UHDR-RT), also known as Flash-RT, has shown the ability to improve the therapeutic index in comparison to conventional radiotherapy (CONV-RT) through increased sparing of normal tissue. However, the extremely high dose rates in UHDR-RT have raised the need for accurate real-time dosimetry tools. This work aims to demonstrate the potential of the emerging technology of Ionized Radiation Acoustic Imaging (iRAI) through simulation studies and investigate its characteristics as a promising relative in vivo dosimetric tool for UHDR-RT.
Methods: The detection of induced acoustic waves following a single UHDR pulse of a modified 6 MeV 21EX Varian Clinac in a uniform porcine gelatin phantom that is brain-tissue equivalent was simulated for an ideal ultrasound transducer. The full 3D dose distributions in the phantom for a 1 × 1 cm field were simulated using EGSnrc (BEAMnrc∖DOSXYZnrc) Monte Carlo (MC) codes. The relative dosimetry simulations were verified with dose experimental measurements using Gafchromic films. The spatial dose distribution was converted into an initial pressure source spatial distribution using the medium-dependent dose-pressure relation. The MATLAB-based toolbox k-Wave was then used to model the propagation of acoustic waves through the phantom and perform time-reversal (TR)-based imaging reconstruction. The effect of the various linear accelerator (linac) operating parameters, including linac pulse duration and pulse repetition rate (frequency), were investigated as well.
Results: The MC dose simulation results agreed with the film measurement results, specifically at the central beam region up to 80% dose within approximately 5% relative error for the central profile region and a local relative error of <6% for percentage dose depth. IRAI-based FWHM of the radiation beam was within approximately 3 mm relative to the MC-simulated beam FWHM at the beam entrance. The real-time pressure signal change agreed with the dose changes proving the capability of the iRAI for predicting the beam position. IRAI was tested through 3D simulations of its response to be based on the temporal changes in the linac operating parameters on a dose per pulse basis as expected theoretically from the pressure-dose proportionality. The pressure signal amplitude obtained through 2D simulations was proportional to the dose per pulse. The instantaneous pressure signal amplitude decreases as the linac pulse duration increases, as predicted from the pressure wave generation equations, such that the shorter the linac pulse the higher the signal and the better the temporal (spatial) resolutions of iRAI. The effect of the longer linac pulse duration on the spatial resolution of the 3D constructed iRAI images was corrected for linac pulse deconvolution. This correction has improved the passing rate of the 1%/1 mm gamma test criteria, between the pressure-constructed and dosimetric beam characteristics, to as high as 98%.
Conclusions: A full simulation workflow was developed for testing the effectiveness of iRAI as a promising relative dosimetry tool for UHDR-RT radiation therapy. IRAI has shown the advantage of 3D dose mapping through the dose signal linearity and, hence, has the potential to be a useful dosimeter at depth dose measurement and beam localization and, hence, potentially for in vivo dosimetry in UHDR-RT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943858 | PMC |
http://dx.doi.org/10.1002/mp.15188 | DOI Listing |
J Acoust Soc Am
January 2025
Department of Biology, University of Aarhus, Aarhus, 8000, Denmark.
Gransier and Kastelein [J. Acoust. Soc.
View Article and Find Full Text PDFTrends Hear
January 2025
Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China.
Wide dynamic range compression (WDRC) and noise reduction both play important roles in hearing aids. WDRC provides level-dependent amplification so that the level of sound produced by the hearing aid falls between the hearing threshold and the highest comfortable level of the listener, while noise reduction reduces ambient noise with the goal of improving intelligibility and listening comfort and reducing effort. In most current hearing aids, noise reduction and WDRC are implemented sequentially, but this may lead to distortion of the amplitude modulation patterns of both the speech and the noise.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Physics and Electronic Information, Yunnan Normal University, No. 1 Yuhua Area, Chenggong District, Kunming 650500, China.
In cell or droplet separation, high acoustic wave energy of a surface acoustic wave (SAW) device is required to generate sufficient acoustic radiation force. In this paper, the electrode width-control floating electrode focused unidirectional interdigital transducer (EWC-FEFUDT) is proposed due to its enhanced focusing properties. The performance of the EWC-FEFUDT is investigated using the Coupling-of-Mode (COM) theory, and the COM parameter is extracted using the Finite Element Method (FEM).
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Arrow Program for Medical Research Education, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel.
As medical imaging continues to expand, concerns about the potential risks of ionizing radiation to the developing fetus have led to a preference for non-radiation-based alternatives such as ultrasonography and fetal MRI. This review examines the current evidence on the safety of MRI during pregnancy, with a focus on 3 T MRI and contrast agents, aiming to provide a comprehensive synthesis that informs clinical decision-making, ensures fetal safety and supports the safe use of all available modalities that could impact management. We conducted a comprehensive review of studies from 2000 to 2024 on MRI safety during pregnancy, focusing on 3 T MRI and gadolinium use.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
Objective: What we hear may influence postural control, particularly in people with vestibular hypofunction. Would hearing a moving subway destabilize people similarly to seeing the train move? We investigated how people with unilateral vestibular hypofunction and healthy controls incorporated broadband and real-recorded sounds with visual load for balance in an immersive contextual scene.
Design: Participants stood on foam placed on a force-platform, wore the HTC Vive headset, and observed an immersive subway environment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!