Oxidative degradation of 2,4,6-tribromophenol by SBA-15 supported metal tetrakis(1-methylpyridinium-4-yl)porphyrins in the presence of humic substances.

J Environ Sci Health A Tox Hazard Subst Environ Eng

Laboratory of Chemical Resources, Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo, Japan.

Published: September 2021

Metal tetrakis(1-methylpyridinium-4-yl)porphyrins were immobilized on sulfonated SBA-15 (MTMPyP-SO--SBA-15, M = Fe, Mn, Zn) for oxidative degradation of 2,4,6-tribromophenol in the presence of humic substances. The influence of the central metal of metalloporphyrins, pH, and catalyst dosage on the 2,4,6-tribromophenol degradation was investigated. FeTMPyP-SO--SBA-15 and MnTMPyP-SO--SBA-15 showed the catalytic activities. The activity of MnTMPyP-SO--SBA-15 was more strongly inhibited by humic substances than that of FeTMPyP-SO--SBA-15. Kinetic study indicated that humic substances suppressed the generation of high valent metal-oxo species in MnTMPyP-SO--SBA-15 at slightly acid condition. There was a clear linear relationship between the content of phenolic-OH and aromatic-C in humic substances and the corresponding inhibition ability. The inhibition by humic substances is probably ascribed to the coordination of humic substances with the monopersulfate species of MnTMPyP-SO--SBA-15, which prevented the formation of the reactive Mn-oxo species.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934529.2021.1959172DOI Listing

Publication Analysis

Top Keywords

humic substances
28
oxidative degradation
8
degradation 246-tribromophenol
8
metal tetrakis1-methylpyridinium-4-ylporphyrins
8
presence humic
8
species mntmpyp-so--sba-15
8
humic
7
substances
7
246-tribromophenol sba-15
4
sba-15 supported
4

Similar Publications

The progression of periodontal disease (PD) involves the action of oxidative stress mediators. Antioxidant agents may potentially attenuate the development of this condition. Thus, we aimed to evaluate the effects of different doses of humic acid (HA), extracted from biomass vermicomposting, on redox status and parameters related to PD progression in rats.

View Article and Find Full Text PDF

Analyze the impact of lignin depolymerization process and its products on humic substance formation.

Int J Biol Macromol

January 2025

College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China. Electronic address:

This study aimed to identify types of lignin depolymerization products (LDP) and their role in humic substances (HS) formation, and little research has revealed which LDP could participate into HS formation during composting. Therefore, rice straw (RS), peanut straw (PS) and pine needles (PN) were selected for their different lignin structures to qualitatively and quantitative analyze LDP firstly. Qualitative results indicated that RS, PS and PN mainly produced LDP with G-type, common group and dimer structure.

View Article and Find Full Text PDF

Network-Based Methods for Deciphering the Oxidizability of Complex Leachate DOM with OH/O via Molecular Signatures.

Environ Sci Technol

January 2025

School of Environmental Science and Engineering, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China.

In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by OH/O using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation.

View Article and Find Full Text PDF

Phosphate (P) is the plant macronutrient with, by far, the lowest solubility in soil. In soils with low P availability, the soil solution concentrations are low, often below 2 [µmol P/L]. Under these conditions, the diffusive P flux, the dominant P transport mechanism to plant roots, is severely restricted.

View Article and Find Full Text PDF

The presence of pharmaceuticals in nature systems poses a threat to the environment, plants, animals, and, last but not least, human health. Their transport in soils, waters, and sediments plays important roles in the toxicity and bioavailability of pharmaceuticals. The mobility of pharmaceuticals can be affected by their interactions with organic matter and other soil and water constituents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!