Targeted proteomics is an attractive approach for the analysis of blood proteins. Here, we describe a novel analytical platform based on isotope-labeled recombinant protein standards stored in a chaotropic agent and subsequently dried down to allow storage at ambient temperature. This enables a straightforward protocol suitable for robotic workstations. Plasma samples to be analyzed are simply added to the dried pellet followed by enzymatic treatment and mass spectrometry analysis. Here, we show that this approach can be used to precisely (coefficient of variation <10%) determine the absolute concentrations in human plasma of hundred clinically relevant protein targets, spanning four orders of magnitude, using simultaneous analysis of 292 peptides. The use of this next-generation analytical platform for high-throughput clinical proteome profiling is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.2144/btn-2021-0047DOI Listing

Publication Analysis

Top Keywords

targeted proteomics
8
recombinant protein
8
protein standards
8
proteomics analysis
4
analysis plasma
4
plasma proteins
4
proteins recombinant
4
standards addition
4
addition workflows
4
workflows targeted
4

Similar Publications

Neuro-reproductive toxicity and carcinogenicity of 1-bromopropane - studies for evidence-based preventive medicine (EBPM).

J Occup Health

January 2025

Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.

Bromopropane was introduced commercially as an alternative to ozone-depleting and global warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties.

View Article and Find Full Text PDF

Automated High-Throughput Affinity Capture-Mass Spectrometry Platform with Data-Independent Acquisition.

J Proteome Res

January 2025

Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States.

Affinity capture (AC) combined with mass spectrometry (MS)-based proteomics is highly utilized throughout the drug discovery pipeline to determine small-molecule target selectivity and engagement. However, the tedious sample preparation steps and time-consuming MS acquisition process have limited its use in a high-throughput format. Here, we report an automated workflow employing biotinylated probes and streptavidin magnetic beads for small-molecule target enrichment in the 96-well plate format, ending with direct sampling from EvoSep Solid Phase Extraction tips for liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis.

View Article and Find Full Text PDF

Medullary thyroid cancer (MTC) is a frequently metastatic tumor of the thyroid that develops from the malignant transformation of C-cells. These tumors most commonly have activating mutations within the RET or RAS proto-oncogenes. Germline mutations within RET result in C-cell hyperplasia, and cause the MTC pre-disposition disorder, multiple endocrine neoplasia, type 2A (MEN2A).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) from brain-seeking breast cancer cells (Br-EVs) breach the blood-brain barrier (BBB) via transcytosis and promote brain metastasis. Here, we defined the mechanisms by which Br-EVs modulate brain endothelial cell (BEC) dynamics to facilitate their BBB transcytosis. BEC treated with Br-EVs show significant downregulation of Rab11fip2, known to promote vesicle recycling to the plasma membrane and significant upregulation of Rab11fip3 and Rab11fip5, which support structural stability of the endosomal compartment and facilitate vesicle recycling and transcytosis, respectively.

View Article and Find Full Text PDF

Drug discovery continues to face a staggering 90% failure rate, with many setbacks occurring during late-stage clinical trials. To address this challenge, there is an increasing focus on developing and evaluating new technologies to enhance the "design" and "test" phases of antibody-based drugs (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!