The research focussed on analysing structural and mechanical properties in the intervertebral disc (IVD), caused by long-term cyclic loading. Spinal motion segments were divided into two groups: the control (C), and the group in which it was analysed the impact of posterior column in the load-bearing system of the spine-specimens with intact posterior column (IPC) and without posterior column (WPC). To evaluate the structural and mechanical changes, the specimens were tested with simulation of 100,000 compression-flexion load cycles after which it was performed macroscopic analysis. Mechanical properties of the annulus fibrosis (AF) from the anterior and posterior regions of the IVD were tested at the uniaxial tension test. The stiffness coefficient values were statistically 32% higher in the WPC group (110 N/mm) than in the IPC (79 N/mm). The dynamics of increase in this parameter does not correspond with the course of decrease in height loss. WPC segments revealed clear structural changes that mainly involve the posterior regions of the IVD (bulging and delamination with the effect of separation of collagen fibre bundles). Pathological changes also caused decreases in the value of stress in the AF. The greatest changes in the stress value about group C (7.43 ± 4.49 MPa) were observed in the front part of the fibrous ring, where this value was for IPC 4.49 ± 4.78 MPa and WPC 2.56 ± 1.01 MPa. The research indicates that the applied load model allows simulating damage that occurs in pathological IVD. And the posterior column's presence affects this change's dynamics, structural and mechanical properties of AF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595169 | PMC |
http://dx.doi.org/10.1007/s10237-021-01505-w | DOI Listing |
J Biol Eng
January 2025
Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA.
Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.
View Article and Find Full Text PDFJ Cheminform
January 2025
Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK.
Current strategies centred on either merging or linking initial hits from fragment-based drug design (FBDD) crystallographic screens generally do not fully leaverage 3D structural information. We show that an algorithmic approach (Fragmenstein) that 'stitches' the ligand atoms from this structural information together can provide more accurate and reliable predictions for protein-ligand complex conformation than general methods such as pharmacophore-constrained docking. This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode.
View Article and Find Full Text PDFACS Nano
January 2025
Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.
Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.
View Article and Find Full Text PDFNano Lett
January 2025
Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany.
The mechanical coupling between molecules represents a promising route for the development of molecular machines. Constructing molecular gears requires easily rotatable and mutually interlocked pinions. Using scanning tunneling microscopy (STM), it is demonstrated that aluminum phthalocyanine (AlPc) molecules on Pb(100) exhibit these properties.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin City, 300350, China.
The use of AR technology in image-guided neurosurgery enables visualization of lesions that are concealed deep within the brain. Accurate AR registration is required to precisely match virtual lesions with anatomical structures displayed under a microscope. The purpose of this work was to develop a real-time augmented surgical navigation system using contactless line-structured light registration, microscope calibration, and visible optical tracking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!