AI Article Synopsis

  • Fibrotic remodeling of epicardial adipose tissue (EAT) is linked to atrial fibrillation (AF) and relates to adipocyte size differences in central versus marginal areas of EAT.
  • Research on 76 AF patients shows that smaller adipocyte diameters and more severe fibrosis occur in the marginal EAT compared to the central EAT, with a strong correlation found between the ratio of these diameters and the level of fibrosis.
  • Additionally, changes in EAT fat attenuation observed through CT imaging correlate with EAT fibrosis, indicating that this imaging technique can provide a non-invasive way to assess fibrotic remodeling.

Article Abstract

Background: Fibrotic remodeling of epicardial adipose tissue (EAT) is crucial for proinflammatory atrial myocardial fibrosis, which leads to atrial fibrillation (AF).

Objectives: We tested the hypothesis that the ratio of central to marginal adipocyte diameter in EAT represents its fibrotic remodeling. Based on a similar concept, we also tested whether the percent (%) change in EAT fat attenuation determined using computed tomographic (CT) images can detect this remodeling.

Methods: Left atrial appendages were obtained from 76 consecutive AF patients during cardiovascular surgery. EAT in the central area (central EAT: C-EAT) and that adjacent to the atrial myocardium (Marginal EAT: M-EAT) were evaluated histologically. CT images for all of the 76 patients were also analyzed.

Results: The adipocyte diameter was smaller, fibrotic remodeling of EAT (EAT fibrosis) was more severe, and infiltration of macrophages and myofibroblasts was more extensive in M-EAT than in C-EAT. EAT fibrosis was positively correlated with adipocyte diameter in C-EAT and negatively correlated in M-EAT, resulting in a positive correlation between EAT fibrosis and the ratio of central to marginal adipocyte diameter (C/M diameter ratio; r = 0.73, < .01). The C/M diameter ratio was greater in patients with persistent AF than in those with paroxysmal AF. CT images demonstrated that the %change in EAT fat attenuation was positively correlated with EAT fibrosis.

Conclusion: Our results suggest that the central-to-marginal adipocyte diameter ratio is tightly associated with fibrotic remodeling of EAT. In addition, the %change in EAT fat attenuation determined using CT imaging can detect remodeling noninvasively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369308PMC
http://dx.doi.org/10.1016/j.hroo.2021.05.006DOI Listing

Publication Analysis

Top Keywords

fibrotic remodeling
20
adipocyte diameter
20
eat
14
eat fat
12
fat attenuation
12
eat fibrosis
12
diameter ratio
12
remodeling epicardial
8
epicardial adipose
8
adipose tissue
8

Similar Publications

Aneurysm Is Restricted by CD34 Cell-Formed Fibrous Collars Through the PDGFRb-PI3K Axis.

Adv Sci (Weinh)

December 2024

Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.

Aortic aneurysm is a life-threatening disease caused by progressive dilation of the aorta and weakened aortic walls. Its pathogenesis involves an imbalance between connective tissue repair and degradation. CD34 cells comprise a heterogeneous population that exhibits stem cell and progenitor cell properties.

View Article and Find Full Text PDF

Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare but severe condition characterized by persistent obstruction and vascular remodeling in the pulmonary arteries following an acute pulmonary embolism (APE). Although APE is a significant risk factor, up to 25% of CTEPH cases occur without a history of APE or deep vein thrombosis, complicating the understanding of its pathogenesis. Herein, we carried out a narrative review discussing the mechanisms involved in CTEPH development, including fibrotic thrombus formation, pulmonary vascular remodeling, and abnormal angiogenesis, leading to elevated pulmonary vascular resistance and right heart failure.

View Article and Find Full Text PDF

Aim: There remain limited therapies to treat thyroid eye disease (TED) orbital fibrosis, highlighting the urgency to develop novel targets. Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts are important pathogenetic factor of TED. Endoplasmic reticulum (ER) stress may play a role in TED pathogenesis since it has been linked to liver, kidney, heart and lung fibrotic remodelling.

View Article and Find Full Text PDF

Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired and lung function declines.

View Article and Find Full Text PDF

ADAM Metallopeptidase domain 19 promotes skin fibrosis in systemic sclerosis via neuregulin-1.

Mol Med

December 2024

Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.

Background: ADAM19 (ADAM Metallopeptidase Domain 19) is known to be involved in extracellular matrix (ECM) remodeling, yet its specific function in systemic sclerosis (SSc) fibrosis remains unclear.

Objectives: This study sought to clarify the role and underlying mechanism of ADAM19 in SSc skin fibrosis.

Methods: The expression of ADAM19 was assessed in skin tissues of SSc and wound healing using publicly available transcriptome datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!