Background: The development of biomaterials with the ability to promote skin wound healing is an important topic in the field of biomedical science. In this study, a topical curcumin (Cur) gel [Cur/hyaluronic acid (HA)] was prepared by combining curcumin-loaded PCL-b-PEG-b-PCL (PECE) nanomicelles (PCEC/Cur) and HA to effectively promote skin wound healing. Continuous drug release from PCEC/Cur can provide long-term protection and treatment of skin wounds.

Methods: The study was completed in two stages. The first stage (): PCEC/Cur were prepared by thin film hydration method. The second stage (): 36 anesthetized rats were used to prepare a round full-thickness skin defect wound with a diameter of 23 mm on the dorsal side of the spine, and the rats were randomly divided into 4 groups with 9 rats in each group.

Results: The results showed that wounds in the Cur/HA group were restored to normal after 14 days after operation, representing 96%±3% wound healing. Hematoxylin and eosin (HE) staining showed that hair follicles in the Cur/HA group were visible and that the re-epithelialization time was earlier. Masson staining showed that Cur/HA promoted the formation of collagen fibers. Immunohistochemical observation showed that angiogenesis and subsequent healing of the wound surface was enhanced in the Cur/HA group.

Conclusions: The injectable hyaluronic acid gel complex Cur/HA is a promising candidate material for a wound dressing to promote healing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350667PMC
http://dx.doi.org/10.21037/atm-21-2872DOI Listing

Publication Analysis

Top Keywords

wound healing
16
skin wound
12
promote skin
8
cur/ha group
8
healing
6
wound
6
skin
5
cur/ha
5
healing promoted
4
promoted novel
4

Similar Publications

Monitoring deep wounds is challenging but necessary for high-quality medical treatment. Current methodologies for deep wound monitoring are typically limited to indirect clinical symptoms or costly non-real-time imaging diagnosis. Herein, a smart system is proposed that enables in situ monitoring of deep wounds' status through a semi-implantable device composed of 2 seamlessly connected functional components: 1) the well-designed, microchannel-structured sampling needles that efficiently and conveniently collect samples from deep wound anatomical locations, and 2) the multiplex biochemical testing compartment that facilitates the immediate and persistent detection of multiple biochemical indicators based on a color image processing software accessible to a conventional smartphone.

View Article and Find Full Text PDF

Cultured human embryonic stem cells (hESCs) can develop genetic anomalies that increase their susceptibility to transformation. In this study, we characterized a variant hESC (vhESC) line and investigated the molecular mechanisms leading to the drift towards a transformed state. Our findings revealed that vhESCs up-regulate EMT-specific markers, accelerate wound healing, exhibit compromised lineage differentiation, and retain pluripotency gene expression in teratomas.

View Article and Find Full Text PDF

Background/aim: Hydrogen therapy has demonstrated potential as an antioxidant and anti-inflammatory intervention, particularly in the management of chronic diseases such as chronic kidney disease (CKD) and autoimmune conditions. This case report presents the possible therapeutic benefits of molecular hydrogen capsule treatment in enhancing renal function and alleviating chronic fatigue in an elderly female with coronary artery disease (CAD), type 2 diabetes mellitus (DM) complicated by nephropathy, and systemic lupus erythematosus (SLE). The aim of this study was to investigate the efficacy of adjunctive hydrogen therapy in an elderly patient with multiple chronic comorbidities.

View Article and Find Full Text PDF

Background/aim: Organometallic complexes can decrease adhesion, migration, invasion of cancer cells, mainly through regulation of the extracellular matrix and therefore act against metastases. The aim was to investigate the anti-invasive properties of a rhenium-based metal compound, rhenium(I)-diselenoether (Re-diSe) and its effects on matrix metalloproteinase MMP-2, a key player in metastatic processes, in cultured MDA-MB231 triple-negative breast cancer cells.

Materials And Methods: Matrigel was utilized to assess cancer cell adhesion to the extracellular matrix.

View Article and Find Full Text PDF

The self-assembled peptide RADA16-I (RADARADARADARADA) has been widely used in biomaterials. However, studies on the practical application of self-assembled peptide hydrogels loaded with bioactive peptides are still insufficient. In this study, we successfully prepared the peptide nanofiber gel RGJ by incorporating the bioactive peptides A8SGLP-1 (G) and Jagged-1 (J) into RADA16-I (R) in specific ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!