To determine whether mesenchyme plays a part in the differentiation of gut endocrine cells, proventricular endoderm from 4- to 5-day chick or quail embryos was associated with mesenchyme from the dorsal pancreatic bud of chick embryos of the same age. The combinations were grown on the chorioallantoic membranes of host chick embryos until they reached a total incubation age of 21 days. Proventricular or pancreatic endoderm of the appropriate age and species reassociated with its own mesenchyme provided the controls. Morphogenesis in the experimental grafts corresponded closely to that in proventricular controls, i.e. the pancreatic mesenchyme supported the development of proventricular glands from proventricular endoderm. Insulin, glucagon and somatostatin cells and cells with pancreatic polypeptide-like immunoreactivity differentiated in the pancreatic controls. The latter three endocrine cell types, together with neurotensin and bombesin/gastrin-releasing polypeptide (GRP) cells, developed in proventricular controls and experimental grafts. The proportions of the major types common to proventriculus and pancreas (somatostatin and glucagon cells) were in general similar when experimental grafts were compared with proventricular controls but different when experimental and pancreatic control grafts were compared. Hence pancreatic mesenchyme did not materially affect the proportions of these three cell types in experimental grafts, induced no specific pancreatic (insulin) cell type and allowed the differentiation of the characteristic proventricular endocrine cell types, neurotensin and bombesin/GRP cells. However, an important finding was a significant reduction in the proportion of bombesin/GRP cells, attributable in part to a decrease in their number and in part to an increase in the numbers of endocrine cells of the other types. This indicates that mesenchyme may well play a part in determining the regional specificity of populations of gut endocrine cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.100.4.661 | DOI Listing |
Front Cell Dev Biol
January 2025
Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia.
Current dissociation methods for solid tissues in scRNA-seq studies do not guarantee intact single-cell isolation, especially for sensitive and complex human endocrine tissues. Most studies rely on enzymatic dissociation of fresh samples or nuclei isolation from frozen samples. Dissociating whole intact cells from fresh-frozen samples, commonly collected by biobanks, remains a challenge.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
The First Affiliated Hospital, Gynecology&Obstetrics and Reproductive Medical Center, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
Objective: Polycystic Ovary Syndrome (PCOS) is a prevalent endocrinopathy in reproductive-aged women, contributing to 75% of infertility cases due to ovulatory dysfunction. The condition poses significant health and psychological challenges, making the study of its pathogenesis and treatment a research priority. This study investigates the effects of Mogroside V (MV) on PCOS, focusing on its anti-inflammatory and anti-insulin resistance properties.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Endocrine Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, Chin, China.
Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
Aging is characterized by cellular degeneration and impaired physiological functions, leading to a decline in male sexual desire and reproductive capacity. Oxidative stress (OS) lead to testicular aging by impairing the male reproductive system, but the potential mechanisms remain unclear. In the present study, the functional status of testicular tissues from young and aged boars was compared, and the transcriptional responses of Leydig cells (LCs) to hydrogen peroxide (HO)-induced senescence were explored, revealing the role of OS in promoting aging of the male reproductive system.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacy and BioTechnology - FaBiT, Alma Mater Studiorum - University of Bologna, via Irnerio 48, Bologna, 40126, Italy.
Environmental endocrine disruptor chemicals (EDCs) have raised significant concerns due to their potential adverse effects on human health, particularly on the central nervous system (CNS). This study provides a comparative analysis of the effects of 17-alpha ethinyl estradiol (EE2) and diethyl phthalate (DEP) on neuronal cell proliferation and neurotoxicity. Using differentiated SH-SY5Y human neuronal cells, we evaluated cell viability, microRNA (miRNA) regulation, and RNA expression following exposure to subtoxic concentrations of EE2 and DEP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!