A fast, facile and one-pot chemical activation method was used to develop porous carbons with high surface area and excellent phenolic micropollutant adsorption performance from renewable precursors. This method was applied to three precursors: naturally abundant, but often underestimated wildfire-damaged boreal peats, corn starch, and cellulose. Porous carbon formation was accomplished through precursor impregnation with ZnCl powder and their simultaneous pyrolysis under inert N flow at 400 or 600 °C for 1 h. The maximum adsorption capacities of these bio-sorbents towards a model contaminant, -nitrophenol, in simulated wastewater were equal to or superior than using a commercial activated carbon (CAC), Norit GSX (> 530 mg/g) over wide initial concentration ranges (20-2000 mg/L). -nitrophenol adsorption best fitted Freundlich and Redlich-Peterson isotherms, suggesting multilayer chemisorption. Low concentration -nitrophenol (20 mg/L) adsorption into the bio-sorbents was rapid in the first 4 h, and could reach high removals (> 98%). The method presented here yielded bio-sorbents with similarly high adsorption performance regardless of the precursor type, while avoiding energy-intensive processing steps during sorbent production. This study gives a useful alternative for manufacturing new sorbents from other upcycled carbonaceous and/or bio-based materials to remove micropollutants and heavy metals.•Fast, single-step chemical activation for manufacturing bio-based porous carbons.•Efficient adsorption towards aqueous phenolic micropollutant from batch studies.•A competitive substitute of charcoal activated carbons for water purification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374634PMC
http://dx.doi.org/10.1016/j.mex.2021.101464DOI Listing

Publication Analysis

Top Keywords

high surface
8
surface area
8
bio-based porous
8
porous carbons
8
chemical activation
8
phenolic micropollutant
8
adsorption performance
8
adsorption
6
fast synthesis
4
high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!