Robust and reproducible quantification of microplastic pollution in freshwater ecosystems requires the processing of a large amount of samples collected in varying environmental conditions. Such samples are characterized by a high amount of organic matter compared to microplastics and are highly variable in terms of the quantity and the composition of matrices, requiring a standardized analytical protocol for sample treatment and analysis. However, two important and time-consuming steps for microplastic recovery are the elimination of organic matter and microscopic inspection of samples. Here, we developed and validated a protocol, targeting particles with length ranging from 700 µm to 5 mm, that includes a double-step digestion of organic matter, consisting of incubation with potassium hydroxide followed by hydrogen peroxide solutions, and two stereomicroscopic analyses. In addition, we developed several technical improvements allowing reducing the time needed to process samples, such as the design of an adapted filter-cap to improve the content transfer. The absence of physical and chemical alterations in the investigated microplastic pellets and the average reduction of 65.8% (± 9.59 SD) of organic matter in real samples demonstrated that our protocol is fit for purpose. We recommend a second stereomicroscopic analysis to avoid underestimating microplastic concentration and particle size distribution biased towards larger particles. When used for a large-scale monitoring of microplastic pollution, this protocol resulted in an estimated time of 38 h for one person for the treatment of a batch of 24 samples, allowing a higher throughput sample processing and reproducible quantification. • • • .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374496 | PMC |
http://dx.doi.org/10.1016/j.mex.2021.101396 | DOI Listing |
Microb Ecol
January 2025
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.
View Article and Find Full Text PDFBioresour Technol
January 2025
National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China. Electronic address:
The combination of hematite and biochar significantly accelerated tetracycline (TC) removal under visible light irradiation. The k of TC removal with Hem/BC-5 reached 0.103 min, 3.
View Article and Find Full Text PDFWater Res
January 2025
College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, Jiangsu, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China. Electronic address:
Endogenous nitrogen (N) release from lake sediments is one of main causes affecting water quality, which can be affected by the presence of iron (Fe) minerals and organic matter, especially low-molecular-weight organic acids (LMWOAs). Although these substances always coexist in sediments, their interaction effect on N fate is not yet clear. In this study, the role and mechanisms of the coexistence of iron mineral (ferrihydrite, Fh) and LMWOAs, i.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.
The effects of micro- and nano-plastics (MNPs) on human health are of global concern because MNPs are ubiquitous, persistent, and potentially toxic, particularly when bound to atmospheric fine particles (PM). Traditional quantitative analysis of MNPs by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) is often inaccurate because of false positive signals caused by similar polymers and organic compounds. In this study, a reliable analytical strategy combining HNO digestion and chromatographic peak reconstruction was developed to improve the precision of pyrolysis-gas chromatography-mass spectrometry analysis of multiple MNPs bound to PM.
View Article and Find Full Text PDFPLoS One
January 2025
Instituto Tecnológico de Tlajomulco, Tecnológico Nacional de México, Tecnológico Nacional de México, Circuito Metropolitano Sur, Tlajomulco de Zúñiga, Jalisco, Mexico.
The community assembly of arbuscular mycorrhizal fungi (AMF) in the rhizosphere results from the recruitment and selection of different AMF species with different functional traits. The aim of this study was to analyze the relationship between biotic and abiotic factors and the AMF community assembly in the rhizosphere of four secondary vegetation (SV) plant species in a temperate forest. We selected four sites at two altitudes, and we marked five individuals per plant species at each site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!