Introduction Acute respiratory distress syndrome (ARDS) after mild traumatic brain injury (TBI) can be associated with significant morbidity and mortality. This study aimed to evaluate the potential predictive factors of ARDS development following mild TBI in trauma patients. Methods A retrospective chart review was done for adult trauma patients with mild TBI (GCS 13-15) requiring admission at our center from 2012 to 2020. Linear regression analysis and chi-square test were utilized to identify independent predictors of the association with ARDS in adults with mild TBI.  Results A total of 784 mild TBI patients were admitted during the time of interest; 34 patients developed ARDS during their index hospitalization. Patients who had ARDS were more likely to have acute kidney injury (AKI; p < 0.0001), sepsis (p < 0.01), rib fractures (p < 0.05), use of anticoagulants (p < 0.001), deep vein thrombosis (p < 0.001), transfusion during the first 4four hours upon admission (p = 0.01), intravenous fluid (IVF) resuscitation during the first four hours (p <0.05), the first eight hours (p = 0.01), the first 12 hours (p = 0.03), and intubation upon the admission (p < 0.0001). ARDS associated with mild TBI demonstrated a statistically significant increase in mortality during the index hospitalization (p < 0.0001). Conclusion ARDS after mild TBI can be associated with significant morbidity and mortality. Key risk factors identified include AKI, sepsis, anticoagulant use, deep vein thrombosis (DVT), transfusion in the first four hours, IVF resuscitation in the first four, eight, and 12 hours, and intubation upon admission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374992PMC
http://dx.doi.org/10.7759/cureus.16508DOI Listing

Publication Analysis

Top Keywords

mild tbi
12
acute respiratory
8
respiratory distress
8
distress syndrome
8
development mild
8
mild traumatic
8
traumatic brain
8
brain injury
8
trauma patients
8
mild
6

Similar Publications

Growing evidence reveals that microglia activation and neuroinflammatory responses trigger cell loss in the brain. Histamine is a critical neurotransmitter and promotes inflammatory responses; thus, the histaminergic system is a potential target for treating neurodegenerative processes. JNJ-7777120, a histamine H4 receptor (HR) antagonist, has been shown to alleviate inflammation, brain damage, and behavioral deficits effectively, but there is no report on its role in brain trauma.

View Article and Find Full Text PDF

Background: Even patients with normal computed tomography (CT) head imaging may experience persistent symptoms for months to years after mild traumatic brain injury (mTBI). There is currently no good way to predict recovery and triage patients who may benefit from early follow-up and targeted intervention. We aimed to assess if existing prognostic models can be improved by serum biomarkers or diffusion tensor imaging metrics (DTI) from MRI, and if serum biomarkers can identify patients for DTI.

View Article and Find Full Text PDF

Background: Post-traumatic stress disorder (PTSD) and depression are common after mild traumatic brain injury (mTBI), but their biological drivers are uncertain. We therefore explored whether polygenic risk scores (PRS) derived for PTSD and major depressive disorder (MDD) are associated with the development of cognate TBI-related phenotypes.

Methods: Meta-analyses were conducted using data from two multicenter, prospective observational cohort studies of patients with mTBI: the CENTER-TBI study (ClinicalTrials.

View Article and Find Full Text PDF

A high-performance core laboratory GFAP/UCH-L1 test for the prediction of intracranial injury after mild traumatic brain injury.

Am J Emerg Med

December 2024

Warfighter Readiness, Performance, and Brain Health Project Management Office (WRPBH PMO), US Army Medical Materiel Development Activity (USAMMDA), 1430 Veterans Drive, Fort Detrick, MD 21702, USA.

Background: A glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) blood biomarker panel can reliably eliminate the need to perform a head computed tomography (CT) scan in selected patients with traumatic brain injury (TBI). Currently, this FDA cleared panel can be run both on a core laboratory platform or a hand-held single-sample point of care platform. This study examined test characteristics of the panel as analyzed on a core lab-based fast high-throughput platform.

View Article and Find Full Text PDF

Objective: This study aims to explore the clinical significance of long non-coding RNA, myocardial infarction-associated transcript (MIAT), in patients with traumatic brain injury (TBI).

Methods: Retrospective inclusion of TBI patients meeting clinical criteria with complete data, alongside healthy controls. RT-qPCR was used to detect the expression of the serum MIAT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!