Extensively managed and flower-rich mountain hay meadows, hotspots of Europe's biodiversity, are subject to environmental and climatic gradients linked to altitude. While the shift of pollinators from bee- to fly-dominated communities with increasing elevation across vegetation zones is well established, the effect of highland altitudinal gradients on the community structure of pollinators within a specific habitat is poorly understood. We assessed wild bee and hoverfly communities, and their pollination service to three plant species common in mountain hay meadows, in eighteen extensively managed yellow oat grasslands () with an altitudinal gradient spanning approx. 300 m. Species richness and abundance of pollinators increased with elevation, but no shift between hoverflies and wild bees (mainly bumblebees) occurred. Seedset of the woodland cranesbill () increased with hoverfly abundance, and seedset of the marsh thistle () increased with wild bee abundance. Black rampion () showed no significant response. The assignment of specific pollinator communities, and their response to altitude in highlands, to different plant species underlines the importance of wild bees and hoverflies as pollinators in extensive grassland systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8366848PMC
http://dx.doi.org/10.1002/ece3.7924DOI Listing

Publication Analysis

Top Keywords

wild bees
12
mountain hay
12
hay meadows
12
bees hoverflies
8
altitudinal gradient
8
extensively managed
8
wild bee
8
plant species
8
wild
5
distribution pollination
4

Similar Publications

Pesticides have a significant impact on the environment, harming valuable non-target organisms like bees. Honeybees, in particular, are ideal bioindicators of pesticide exposure due to extensive research on how pesticides affect their behavior, immunity, development, biomolecules, and detoxification. However, wild pollinators are less studied in terms of pesticide exposure, and their inclusion is essential for a comprehensive risk assessment.

View Article and Find Full Text PDF

Bumblebees, the most important wild pollinators in both agricultural and natural ecosystems, are declining worldwide. The global decline of bumblebees may threaten biodiversity, pollination services, and, ultimately, agricultural productivity. Several factors, including pesticide usage, climate change, habitat loss, and species invasion, have been documented in the decline of bumblebee species, but recent studies have revealed the dominating role of pathogens and parasites over any of these causes.

View Article and Find Full Text PDF

The four honeybee species native to Cambodia-, , , -play a vital role in ecosystem health and agricultural productivity through their pollination activities. Beekeeping in Cambodia has primarily developed around the introduced species . However, it remains underdeveloped compared to neighboring countries, with wild honey collection continuing to play a significant role.

View Article and Find Full Text PDF

Solitary wild bees play a key role as pollinators of wild plants and crops, but they are increasingly at risk from anthropogenic global change, such as climate warming. However, how warmer temperature during overwintering affects reproductive success of those bees remains largely unknown. In a semi-field experiment we assessed individual life-long reproductive success of 144 females of the solitary bee species Osmia bicornis that had been wintered at three different temperatures.

View Article and Find Full Text PDF

Introduction: The global decline in biodiversity and insect populations highlights the urgent need to conserve ecosystem functions, such as plant pollination by solitary bees. Human activities, particularly agricultural intensification, pose significant threats to these essential services. Changes in land use alter resource and nest site availability, pesticide exposure and other factors impacting the richness, diversity, and health of solitary bee species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!