Vegetation phenology-the seasonal timing and duration of vegetative phases-is controlled by spatiotemporally variable contributions of climatic and environmental factors plus additional potential influence from human management. We used land surface phenology derived from the Advanced Very High Resolution Radiometer and climate data to examine variability in vegetation productivity and phenological dates from 1989 to 2014 in the U.S. Northwestern Plains, a region with notable spatial heterogeneity in climate, vegetation, and land use. We first analyzed interannual trends in six phenological measures as a baseline. We then demonstrated how including annual-resolution predictors can provide more nuanced insights into measures of phenology between plant communities and across the ecoregion. Across the study area, higher annual precipitation increased both peak and season-long productivity. In contrast, higher mean annual temperatures tended to increase peak productivity but for the majority of the study area decreased season-long productivity. Annual precipitation and temperature had strong explanatory power for productivity-related phenology measures but predicted date-based measures poorly. We found that relationships between climate and phenology varied across the region and among plant communities and that factors such as recovery from disturbance and anthropogenic management also contributed in certain regions. In sum, phenological measures did not respond ubiquitously nor covary in their responses. Nonclimatic dynamics can decouple phenology from climate; therefore, analyses including only interannual trends should not assume climate alone drives patterns. For example, models of areas exhibiting greening or browning should account for climate, anthropogenic influence, and natural disturbances. Investigating multiple aspects of phenology to describe growing-season dynamics provides a richer understanding of spatiotemporal patterns that can be used for predicting ecosystem responses to future climates and land-use change. Such understanding allows for clearer interpretation of results for conservation, wildlife, and land management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8366863PMC
http://dx.doi.org/10.1002/ece3.7904DOI Listing

Publication Analysis

Top Keywords

land surface
8
surface phenology
8
peak season-long
8
vegetation productivity
8
interannual trends
8
phenological measures
8
plant communities
8
study area
8
higher annual
8
annual precipitation
8

Similar Publications

Theoretical Study on Adsorption of Halogenated Benzenes on Montmorillonites Modified With M(I)/M(II) Cations.

J Comput Chem

January 2025

Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany.

Halogenated benzenes (HBs) are hydrophobic organic chemicals belonging to persistent organic pollutants. Owing to their persistence, they represent a serious problem in environmental contamination, specifically of soils and sediments. One of the most important physical processes determining the fate of HBs in soils is adsorption to main soil components such as soil organic matter and soil minerals.

View Article and Find Full Text PDF

Effects of Conservation Agriculture on Soil NO Emissions and Crop Yield in Global Cereal Cropping Systems.

Glob Chang Biol

January 2025

Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, People's Republic of China.

Conservation agriculture, which involves minimal soil disturbance, permanent soil cover, and crop rotation, has been widely adopted as a sustainable agricultural practice globally. However, the effects of conservation agriculture practices on soil NO emissions and crop yield vary based on geography, management methods, and the duration of implementation, which has hindered its widespread scientific application. In this study, we assessed the impacts of no-tillage (NT), both individually and in combination with other conservation agriculture principles, on soil NO emissions and crop yields worldwide, based on 1270 observations from 86 peer-reviewed articles.

View Article and Find Full Text PDF

Utilization of a Solid Waste Inhibitor for the Clean Flotation Enrichment of Phosphate Ores.

Langmuir

January 2025

State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China.

The accumulation of phosphogypsum (PG) in the phosphorus chemical industry poses significant environmental challenges. Therefore, developing a harmless utilization method is crucial for alleviating these burdens and promoting sustainable industry practices. In this study, PG was used as a flotation inhibitor, enabling the flotation separation of apatite and dolomite based on the main components and dissolution behavior of PG.

View Article and Find Full Text PDF

Land system changes of terrestrial tipping elements on Earth under global climate pledges: 2000-2100.

Sci Data

January 2025

State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China.

Tipping elements on Earth are components that undergo rapid and irreversible changes when climate change reaches a tipping point. They are highly sensitive to climate variations and serve as early warning signs of global change. Human activities, including global climate pledges, significantly influence the climate and the state of tipping elements.

View Article and Find Full Text PDF

The increasing population density and impervious surface area have exacerbated the urban heat island effect, posing significant challenges to urban environments and sustainable development. Urban spatial morphology is crucial in mitigating the urban heat island effect. This study investigated the impact of urban spatial morphology on land surface temperature (LST) at the township scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!