Phenotypic plasticity is predicted to evolve in more variable environments, conferring an advantage on individual lifetime fitness. It is less clear what the potential consequences of that plasticity will have on ecological population dynamics. Here, we use an invertebrate model system to examine the effects of environmental variation (resource availability) on the evolution of phenotypic plasticity in two life history traits-age and size at maturation-in long-running, experimental density-dependent environments. Specifically, we then explore the feedback from evolution of life history plasticity to subsequent ecological dynamics in novel conditions. Plasticity in both traits initially declined in all microcosm environments, but then evolved increased plasticity for age-at-maturation, significantly so in more environmentally variable environments. We also demonstrate how plasticity affects ecological dynamics by creating founder populations of different plastic phenotypes into new microcosms that had either familiar or novel environments. Populations originating from periodically variable environments had lowest variability in population size when introduced to novel environments than those from constant or random environments. This suggests that while plasticity may be costly it can confer benefits by reducing the likelihood that offspring will experience low survival through competitive bottlenecks in variable environments. In this study, we demonstrate how plasticity evolves in response to environmental variation and can alter population dynamics-demonstrating an eco-evolutionary feedback loop in a complex animal moderated by plasticity in growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8366859PMC
http://dx.doi.org/10.1002/ece3.7813DOI Listing

Publication Analysis

Top Keywords

variable environments
16
ecological dynamics
12
novel environments
12
plasticity
11
environments
10
dynamics novel
8
phenotypic plasticity
8
environmental variation
8
life history
8
demonstrate plasticity
8

Similar Publications

Air pollution, a global health hazard, significantly impacts mortality, cardiovascular health, mental well-being, and overall human health. This study aimed to investigate the impact of air pollution and meteorological factors on cardiovascular mortality rates in Mashhad City, northeastern Iran in 2017-2020. We utilized a Random Forest (RF) model in this study.

View Article and Find Full Text PDF

West Nile virus (WNV) is a mosquito-borne zoonotic flavivirus which often causes asymptomatic infection in humans but may develop into a deadly neuroinvasive disease. In this study, we aimed to investigate variables potentially associated with human WNV infection using human and mosquito WNV surveillance and monitoring datasets, established over 20 years, from 2003 to 2022, across the province of Ontario, Canada. We combined climatic and geographic data, mosquito surveillance data (n = 3010 sites), blood donation arboviral detection testing data in the human population, and demographic and socio-economic data from Canadian population censuses.

View Article and Find Full Text PDF

The study presents findings from physico-chemical and elemental analyses of fresh faecal matter from a residential apartment in Thiruvananthapuram, Kerala, India. Samples were taken every 8-10 days over 4 months to account for variability and establish baseline data. The study also examines the influence of dietary patterns and toilet cleaners on faecal sludge properties.

View Article and Find Full Text PDF

The presence of antibiotics in the environment is of significant concern due to their adverse effects on aquatic ecosystems. This study provides an assessment of potential ecological risks (RQ) associated with the concentrations of eight antibiotics and antiparasitics (amoxicillin-AMO, azithromycin-AZI, ciprofloxacine-CIP, ofloxacine-OFL, oxfendazole-OXF, lincomycin-LIN, sulfacetamide-SCE and sulfamethoxazole-SME) in the surface water of 13 urban lakes in Hanoi city, Vietnam during the period 2021-2023. The findings revealed considerable variations in the total concentrations of these 8 substances (T), ranging from below the method detection limit (< MDL) to 2240 ng L with an average of 330.

View Article and Find Full Text PDF

Today, there are environmental problems all over the world due to the emission of greenhouse gasses caused by the combustion of diesel fuel. The excessive consumption and drastic reduction of fossil fuels have prompted the leaders of various countries, including Iran, to put the use of alternative and clean energy sources on the agenda. In recent years, the use of biofuels and the addition of nanoparticles to diesel fuel have reduced pollutant emissions, improved the environment, and enhanced the physicochemical properties of the fuel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!