With the increase in farming density and the continuously high summer temperatures against the background of global warming, high temperature stress has become a major challenge in fish farming. In this study, we simulated the high temperature environments (20 °C, 24 °C, and 28 °C) that may occur during turbot culture. High-throughput sequencing was used to investigate the lipid metabolism response patterns in juvenile turbot liver under high temperature stress. A total of 2067 differentially expressed genes (DEGs) were identified. KEGG analysis revealed that the DEGs were mainly associated with glycerophospholipid metabolism, steroid biosynthesis, glycerolipid metabolism, fatty acid metabolic pathways, and the PPAR signaling pathway. A regulatory network was constructed to further elucidate the transcriptional regulation of lipid metabolism. We speculated that high temperature activates PPAR signaling pathway through interaction with ligands such as fatty acids. On the one hand, the HMGCS1 gene in this pathway can inhibit sterol synthesis by down-regulating the expression of key genes in steroid biosynthesis pathway (SQLE, EBP, and DHCR24). On the other hand, the expression of ACSL1 in this pathway is significantly increased under high temperature, which may play an important role in regulating fatty acid metabolism. Moreover, we collected blood and detected changes in serum lipid parameters; the variation patterns were also consistent with our results. These findings reveal that lipid metabolism has an important regulatory role in stress resistance when turbot is exposed to high temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbd.2021.100887DOI Listing

Publication Analysis

Top Keywords

high temperature
20
lipid metabolism
16
high
8
high temperatures
8
juvenile turbot
8
temperature stress
8
steroid biosynthesis
8
fatty acid
8
ppar signaling
8
signaling pathway
8

Similar Publications

Platanus occidentalis L. fruit-derived carbon materials for electrochemical potassium storage.

Nanotechnology

January 2025

Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability.

View Article and Find Full Text PDF

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

Evidence for a metal-bosonic insulator-superconductor transition in compressed sulfur.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

The abrupt drop of resistance to zero at a critical temperature is a key signature of the current paradigm of the metal-superconductor transition. However, the emergence of an intermediate bosonic insulating state characterized by a resistance peak preceding the onset of the superconducting transition has challenged this traditional understanding. Notably, this phenomenon has been predominantly observed in disordered or chemically doped low-dimensional systems, raising intriguing questions about the generality of the effect and its underlying fundamental physics.

View Article and Find Full Text PDF

The pseudogap phenomena have been a long-standing mystery of the cuprate high-temperature superconductors. The pseudogap in the electron-doped cuprates has been attributed to band folding due to antiferromagnetic (AFM) long-range order or short-range correlation. We performed an angle-resolved photoemission spectroscopy study of the electron-doped cuprates PrLaCeCuO showing spin-glass, disordered AFM behaviors, and superconductivity at low temperatures and, by measurements with fine momentum cuts, found that the gap opens on the unfolded Fermi surface rather than the AFM Brillouin zone boundary.

View Article and Find Full Text PDF

Xylosandrus crassiusculus Motschulsky and Xylosandrus germanus Blandford are serious ambrosia beetle pests in ornamental nurseries. Three ethanol baits, AgBio low release (LR), AgBio high release (HR), and Trécé are commercially available for use in bottle traps to determine flight activity of adult Xylosandrus spp. However, release patterns of ethanol from these baits under varying temperatures and captures of Xylosandrus spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!