Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Zirconia is becoming reckoned as a promising solution for different applications, in particular those within the dental implant investigation field. It has been proved to successfully overcome important limitations of the commonly used titanium implants. The adhesion of microorganisms to the implants, in particular of bacteria, may govern the success or the failure of a dental implant, as the accumulation of bacteria on the peri-implant bone may rapidly evolve into periodontitis. However, bacterial adhesion on different zirconia architectures is still considerably unknown. Therefore, the adhesion of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa to zirconia surfaces with different finishings was evaluated and compared to a titanium surface. The adhesion interaction between S. aureus and P. aeruginosa was also evaluated using a co-culture since these bacteria are infamous due to their common presence in chronic wound infections. Results showed that different bacterium species possess different properties which influence their propensity to adhere to different roughness levels and architectures. E. coli revealed a higher propensity to adhere to zirconia channelled surfaces (7.15 × 10 CFU/mL), whereas S. aureus and P. aeruginosa adhered more to the titanium control group (1.07 × 10 CFU/mL and 8.43 × 10 CFU/mL, respectively). Moreover, the co-culture denoted significant differences on the adhesion behaviour of bacteria. Despite not having shown an especially better behaviour regarding bacterial adhesion, zirconia surfaces with micro-channels are expected to improve the vascularization around the implants and ultimately enhance osseointegration, thus being a promising solution for dental implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2021.104786 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!