Tooth structure, mechanical properties, and diet specialization of Piranha and Pacu (Serrasalmidae): A comparative study.

Acta Biomater

Materials Science and Engineering Program, University of California, San Diego, United States; Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States; Department of Nanoengineering, University of California, San Diego, United States. Electronic address:

Published: October 2021

The relationship between diet, bite performance, and tooth structure is a topic of common interest for ecologists, biologists, materials scientists, and engineers. The highly specialized group of biters found in Serrasalmidae offers a unique opportunity to explore their functional diversity. Surprisingly, the piranha, whose teeth have a predominantly cutting function and whose main diet is soft flesh, is capable of exerting a greater bite force than a similarly sized pacu, who feeds on a hard durophagous diet. Herein, we expand our understanding of diet specialization in the Serrasalmidae family by investigating the influence of elemental composition and hierarchical structure on the local mechanical properties, stress distribution, and deformation mechanics of teeth from piranha (Pygocentrus nattereri) and pacu (Colossoma macropomum). Microscopic and spectroscopic analyses combined with nanoindentation and finite element simulations are used to probe the hierarchical features to uncover the structure-property relationships in piranha and pacu teeth. We show that the pacu teeth support a durophagous diet through its broad cusped-shaped teeth, thicker-irregular enameloid, interlocking interface of the dentin-enameloid junction, and increased hardness of the cuticle layer due to the larger concentrations of iron present. Comparatively, the piranha teeth are well suited for piercing due to their conical-shape which we report as having the greatest stiffness at the tip and evenly distributed enameloid. STATEMENT OF SIGNIFICANCE: The hierarchical structure and local mechanical properties of the piranha and pacu teeth are characterized and related to their feeding habits. Finite element models of the anterior teeth are generated to map local stress distribution under compressive loading. Bioinspired designs from the DEJ interface are developed and 3D printed. The pacu teeth are hierarchically structured and have local mechanical properties more suitable to a durophagous diet than the piranha. The findings here can provide insight into the design and fabrication of layered materials with suture interfaces for applications that require compressive loading conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2021.08.024DOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
pacu teeth
16
piranha pacu
12
durophagous diet
12
local mechanical
12
teeth
9
tooth structure
8
diet specialization
8
piranha teeth
8
hierarchical structure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!