We present a dynamic window-length classifier for steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) that does not require the user to choose a feature extraction method or channel set. Instead, the classifier uses multiple feature extraction methods and channel selections to infer the SSVEP and relies on majority voting to pick the most likely target. The classifier extends the window length dynamically if no target obtains the majority of votes. Compared with existing solutions, our classifier: (i) does not assume that any single feature extraction method will consistently outperform the others; (ii) adapts the channel selection to individual users or tasks; (iii) uses dynamic window lengths; (iv) is unsupervised (i.e., does not need training). Collectively, these characteristics make the classifier easy-to-use, especially for caregivers and others with limited technical expertise. We evaluated the performance of our classifier on a publicly available benchmark dataset from 35 healthy participants. We compared the information transfer rate (ITR) of this new classifier to those of the minimum energy combination (MEC), maximum synchronization index (MSI), and filter bank canonical correlation analysis (FBCCA). The new classifier increases average ITR to 123.5 bits-per-minute (bpm), 47.5, 51.2, and 19.5 bpm greater than the MEC, MSI, and FBCCA classifiers, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496754PMC
http://dx.doi.org/10.1109/TNSRE.2021.3106876DOI Listing

Publication Analysis

Top Keywords

feature extraction
12
classifier
9
extraction method
8
voting-enhanced dynamic-window-length
4
dynamic-window-length classifier
4
classifier ssvep-based
4
ssvep-based bcis
4
bcis dynamic
4
dynamic window-length
4
window-length classifier
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!