Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties.

Chem Rev

Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.

Published: March 2022

Hydrogen-bonded liquid crystalline polymers have emerged as promising "smart" supramolecular functional materials with stimuli-responsive, self-healing, and recyclable properties. The hydrogen bonds can either be used as chemically responsive (i.e., pH-responsive) or as dynamic structural (i.e., temperature-responsive) moieties. Responsiveness can be manifested as changes in shape, color, or porosity and as selective binding. The liquid crystalline self-organization gives the materials their unique responsive nanostructures. Typically, the materials used for actuators or optical materials are constructed using linear calamitic (rod-shaped) hydrogen-bonded complexes, while nanoporous materials are constructed from either calamitic or discotic (disk-shaped) complexes. The dynamic structural character of the hydrogen bond moieties can be used to construct self-healing and recyclable supramolecular materials. In this review, recent findings are summarized, and potential future applications are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915167PMC
http://dx.doi.org/10.1021/acs.chemrev.1c00330DOI Listing

Publication Analysis

Top Keywords

self-healing recyclable
12
materials stimuli-responsive
8
stimuli-responsive self-healing
8
recyclable properties
8
liquid crystalline
8
dynamic structural
8
materials constructed
8
materials
7
hydrogen-bonded supramolecular
4
supramolecular liquid
4

Similar Publications

Electrochemical activation of small molecules plays an essential role in sustainable electrosynthesis, environmental technologies, energy storage and conversion. The dynamic structural changes of catalysts during the course of electrochemical reactions pose challenges in the study of reaction kinetics and the design of potent catalysts. This short review aims to provide a balanced view of restructuring of electrocatalysts, including its fundamental thermodynamic origins and how these compare to those in thermal and photocatalysis, and highlighting both the positive and negative impacts of restructuring on the electrocatalyst performance.

View Article and Find Full Text PDF

Dynamic Boronic Ester Cross-Linked Polymers with Tunable Properties via Side-Group Engineering.

Polymers (Basel)

December 2024

Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

The development of dynamic covalent materials with repairability, reprocessability, and recyclability is crucial for sustainable development. In this work, we report a new strategy to adjust the thermomechanical properties of boronic ester cross-linked poly(β-hydroxyl amine)s through side-group engineering. By tuning the side groups of the poly(β-hydroxyl amine)s, we have developed self-healable, reprocessable, and shape-programmable materials.

View Article and Find Full Text PDF

Printing Untethered Self-Reconfigurable, Self-Amputating Soft Robots from Recyclable Self-Healing Fibers.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China.

Regarding the challenge of self-reconfiguration and self-amputation of soft robots, existing studies mainly focus on modular soft robots and connection methods between modules. Different from these studies, this study focus on the behavior of individual soft robots from a material perspective. Here, a kind of soft fibers, which consist of hot melt adhesive particles, magnetizable microparticles, and ferroferric oxide microparticles embedded in a thermoplastic polyurethane matrix are proposed.

View Article and Find Full Text PDF

Microwave Heating and Self-Healing Performance of Asphalt Mixtures Containing Metallic Fibres from Recycled Tyres.

Materials (Basel)

December 2024

Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

This study investigates how recycled metal fibres from End-of-Life Tyres (ELTs) affect both microwave heating efficiency and crack healing properties in dense asphalt mixtures. The aim is to improve tyre recyclability by using their fibres in asphalt and exploring their self-healing potential with microwave heating. To achieve this, four dense asphalt mixture designs were studied in the laboratory.

View Article and Find Full Text PDF

2D Polyamides Enable Self-Healing and Recyclable Elastomers with High Robustness, Toughness, and Crack Resistance via Supramolecular Interactions.

Small

December 2024

Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Material Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541004, China.

High-performance elastomers with exceptional mechanical properties and self-healing capabilities have garnered significant attention due to their wide range of potential applications. However, designing elastomers that strike a balance between self-healing capabilities and mechanical properties remains a considerable challenge. Inspired by biological cartilage, a highly robust, tough, and crack-resistant self-healing elastomer is presented by incorporating hydrogen-bond-rich 2D polyamide (2DPA) into a poly(urethane-urea) matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!