Intrauterine devices containing copper placement will release a large amount of Cu2+ into the uterine fluid, leading to local endometrial damage and inflammation, which is considered to be one of the causes of abnormal uterine bleeding. Studies have shown that the metabolism and function of metal ions are related to the regulation of microRNA. The aims of this study were to investigate changes in endometrial microRNA levels after implantation of an intrauterine device containing copper and to preliminarily explore the signalling pathways involved in abnormal uterine bleeding. The subjects were fertile women, aged 25-35, without major obstetrics and gynaecology diseases. Human endometrial tissues were collected before implantation or removal of the intrauterine device containing copper. High-throughput microRNA sequencing was performed on human endometrial tissues, and real-time quantitative PCR, western blotting and immunohistochemistry were used to detect the expression of relevant genes. MicroRNA sequencing results showed that 72 miRNAs were differentially expressed in the endometrial tissue after the insertion of the intrauterine device containing copper. Implantation of an intrauterine device containing copper implantation can up-regulate the expression of miR-144-3p in endometrial tissue, and therefore, decreases the mRNA and protein expression levels of genes related to endometrial injury and tissue repair, including the MT/NF-κB/MMP damage pathway and the THBS-1/TGF-β/SMAD3 repair pathway. In this study, the molecular mechanisms of abnormal uterine bleeding due to an intrauterine device containing copper were preliminarily investigated. The information will be beneficial for the clinical treatment of abnormal uterine bleeding caused by intrauterine device.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molehr/gaab052DOI Listing

Publication Analysis

Top Keywords

device copper
24
intrauterine device
24
abnormal uterine
16
uterine bleeding
16
implantation intrauterine
12
intrauterine
8
copper preliminarily
8
human endometrial
8
endometrial tissues
8
microrna sequencing
8

Similar Publications

Design and characterization of novel graphene-enhanced vapor chambers for lightweight and high-performance electronics cooling.

Nanotechnology

January 2025

Electronics Materials and Systems Laboratory, Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, Kemivägen 9, SE-412 96 Göteborg, Sweden.

The trend towards miniaturization of electronics and increasing transistor density in semiconductors requires more efficient cooling solutions. Vapor chambers are well established passive cooling devices that are used in a wide variety of electronics. Commercial vapor chambers are often made of high-density metals such as copper which can be a downside in lightweight applications such as laptops, smartphones, and tablets.

View Article and Find Full Text PDF

Copper-luteolin nanocomplexes for Mediating multifaceted regulation of oxidative stress, intestinal barrier, and gut microbiota in inflammatory bowel disease.

Bioact Mater

April 2025

School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China.

Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS).

View Article and Find Full Text PDF

Sensitive non-enzymatic sensing of creatinine in urine using a novel paper-based electroanalytical device.

Talanta

December 2024

Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, China. Electronic address:

Accurate analysis of urinary creatinine levels is of great clinical significance. Non-enzymatic creatinine sensing systems (NECSs) have gained growing development because of higher stability and lower cost compared to enzymatic sensing systems. At present, there is a demand for simple approaches to develop NECSs with high sensitivity.

View Article and Find Full Text PDF

IR-Driven Multisignal Conditioning for Multiplex Detection: Thermal-Responsive Triple DNA-Mediated Reconfigurable Photoelectrochemical/Photothermal Dual-Mode Strategy.

ACS Sens

January 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.

Article Synopsis
  • This research introduces a new integrated multitarget photoelectrochemical sensor that simplifies real-time detection by removing the need for complex equipment and time-consuming procedures.
  • The method uses infrared-driven "four-to-one" multisignal conditioning to dynamically adapt the electrode interface for detecting multiple targets simultaneously, specifically utilizing copper sulfide quantum dots for improved signal generation.
  • The sensor's effectiveness is demonstrated by successfully identifying the presence of antibiotics in real samples, showcasing its potential for rapid and eco-friendly applications in environmental, medical, and food safety testing.
View Article and Find Full Text PDF

Rapid Crystallization and Versatile Metalation of Acetylhydrazone-Linked Covalent Organic Frameworks for Heterogenous Catalysis.

J Am Chem Soc

January 2025

School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.

Covalent organic frameworks (COFs) hold promise in heterogeneous metal catalysis benefiting from their robust, crystalline, and porous structures. However, synthetic challenges persist in prolonged crystallization times, limited metal loading, and uncertain coordination environments. Here, we present the rapid crystallization and versatile metalation of new acetylhydrazone-linked COFs (AH-COFs) by condensation of ketone and hydrazide components, featuring full conversion within 30 min under open-air and mild conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!