Ketamine enhances autophagy and endoplasmic reticulum stress in rats and SV-HUC-1 cells via activating IRE1-TRAF2-ASK1-JNK pathway.

Cell Cycle

Department of Organ Transplantation, the Affiliated Yantai Yuhuangding Hospital of Qingdao University,Yantai, China; Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.

Published: September 2021

Background Ketamine-related cystitis (KC) has been researched in many clinical studies, but its exact mechanism is ambiguous and needs further research. Methods We established a KC rat model and analyzed physiological, biochemical, and urodynamic parameters of ketamine (KET)-related bladder injury. Bladder histologic feature, reactive oxygen species (ROS), autophagy-, apoptosis-, and endoplasmic reticulum stress (ERS)-related markers were examined by hematoxylin and eosin staining, Masson staining, ROS kit, quantitative real-time polymerase chain reaction, and western blot. , effects of 0.01, 0.1, and 1 mM KET on cell vitality, apoptosis, ROS level, autophagy-, apoptosis-, and ERS-related markers were examined again. Effects of KET-1 and salubrinal on complex formation, autophagy-, apoptosis-, and ERS-related markers were examined by Co-Immunoprecipitation and western blot. After transfection with shIRE1, complex formation, cell biological behaviors, ROS level, autophagy-, apoptosis-, and ERS-related markers were examined again. Results KET induced bladder hyperactivity and injury. KET facilitated urinary frequency, ROS production, and induced bladder histologic injury by activating autophagy-, apoptosis-, and ERS-related markers in rats. , KET (0.01, 0.1, and 1 mM) restrained cell vitality and elevated apoptosis and ROS level via activating autophagy-, apoptosis-, and ERS-related markers. Moreover, salubrinal reversed the promotion of KET-1 on complex formation, autophagy-, apoptosis-, and ERS-related marker expressions. After transfection with shIRE1, shIRE1 weakened complex formation induced by KET-1, and the effects of KET-1 on cells were offset by shIRE1. Conclusion KET enhanced autophagy and ERS and via restraining IRE1-TRAF2-ASK1-JNK pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525958PMC
http://dx.doi.org/10.1080/15384101.2021.1966199DOI Listing

Publication Analysis

Top Keywords

autophagy- apoptosis-
28
ers-related markers
24
apoptosis- ers-related
24
markers examined
16
complex formation
16
ros level
12
endoplasmic reticulum
8
reticulum stress
8
ire1-traf2-ask1-jnk pathway
8
bladder histologic
8

Similar Publications

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Purpose: Preimplantation aneuploidy in humans is one of the primary causes of implantation failure and embryo miscarriage. This study was conducted to gain insight into gene expression changes that may result from aneuploidy in blastocysts through RNA-Seq analysis.

Methods: The surplus embryos of preimplantation genetic testing for aneuploidy (PGT-A) candidate couples with normal karyotype and maternal age < 38 were collected following identical ovarian stimulation protocol.

View Article and Find Full Text PDF

Bitter acids (BA) are main component of Humulus lupulus L. (hops). They are known for beer brewing and have various biological and pharmacological properties, especially the bone-protective effect confirmed by our previous in vivo study.

View Article and Find Full Text PDF

Vimentin Inhibits Neuronal Apoptosis After Spinal Cord Injury by Enhancing Autophagy.

CNS Neurosci Ther

January 2025

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.

Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.

View Article and Find Full Text PDF

Cervical cancer (CC) is becoming a major health issue globally, and radiotherapy plays a crucial role in its treatment. However, the prognosis of some patients remains poor due to tumor resistance to the therapy. This study aimed to explore whether vitamin D could confer a more radiosensitive phenotype in CC based on our previous findings and detection using the database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!