Lessons Learned: Entinostat at the selected dose levels in combination with a standard dose of enzalutamide showed a promising safety profile in this small phase I study BACKGROUND: Entinostat inhibits prostate cancer (PCa) growth and suppresses Treg cell function in vitro and in vivo.
Methods: This was a phase I study to explore the safety and preliminary efficacy of entinostat (3 and 5 mg orally per week) in combination with enzalutamide in castration resistant PCa (CRPC). The study was carried out in an open-label two-cohort design. Patients who had developed disease progression on or were eligible for enzalutamide were enrolled in the study. The safety profile of the combination therapy, Prostate specific antigen (PSA) levels, the pharmacokinetics of enzalutamide after entinostat administration, peripheral T-cell subtype (including Treg quantitation), and mononuclear cell (PBMC) histone H3 acetylation were analyzed.
Results: Six patients with metastatic CRPC were enrolled. There was no noticeable increment of fatigue related to entinostat. Toxicities possibly or probably related to entinostat or the combination therapy included grade 3 anemia 1/6 (17%), grade 2 white blood cell (WBC) decrease 1/6 (17%), and other self-limiting grade 1 adverse events (AEs). Median duration of treatment with entinostat was 18 weeks. Entinostat did not affect the steady plasma concentration of enzalutamide. Increased PBMC histone H3 acetylation was observed in blood samples. No evident T-cell subtype changes were detected, including in Treg quantitation.
Conclusion: Entinostat 5 mg weekly in combination with enzalutamide showed an acceptable safety profile in this small phase I study. A planned phase II part of the trial was terminated because of sponsor withdrawal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649040 | PMC |
http://dx.doi.org/10.1002/onco.13957 | DOI Listing |
J Health Organ Manag
January 2025
University of Malta, Msida, Malta.
Purpose: This study explores how corporate social responsibility (CSR) and artificial intelligence (AI) can be combined in the healthcare industry during the post-COVID-19 recovery phase. The aim is to showcase how this fusion can help tackle healthcare inequalities, enhance accessibility and support long-term sustainability.
Design/methodology/approach: Adopting a viewpoint approach, the study leverages existing literature and case studies to analyze the intersection of CSR and AI.
Trials
January 2025
Department of Neurology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
Background: Early neurological deterioration (END) is a critical determinant influencing the short-term prognosis of acute ischemic stroke (AIS) patients and is associated with increased mortality rates among hospitalized individuals. AIS frequently coexists with coronary heart disease (CHD), complicating treatment and leading to more severe symptoms and worse outcomes. Shared risk factors between CHD and AIS, especially elevated low-density lipoprotein cholesterol (LDL-C), contribute to atherosclerosis and inflammation, which worsen brain tissue damage.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Department of Biomedical Engineering, China Medical University, Taichung, 406040, Taiwan.
Bone defects present a significant challenge in orthopedics and trauma surgery, necessitating innovative approaches to stimulate effective bone regeneration. This study investigated the potential of lithium-doped calcium silicate (LiCS) cement to enhance bone regeneration and modulate the immune microenvironment to promote tissue repair. We synthesized a LiCS ceramic powder and performed comprehensive analyses of its physicochemical properties, including phase composition, morphology, setting time, and mechanical strength.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Division of Pediatric Epileptology, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, Heidelberg, Germany.
Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder affecting multiple organ systems, with a prevalence of 1:6,760-1:13,520 live births in Germany. On the molecular level, TSC is caused by heterozygous loss-of-function variants in either of the genes TSC1 or TSC2, encoding the Tuberin-Hamartin complex, which acts as a critical upstream suppressor of the mammalian target of rapamycin (mTOR), a key signaling pathway controlling cellular growth and metabolism. Despite the therapeutic success of mTOR inhibition in treating TSC-associated manifestations, studies with mTOR inhibitors in children with TSC above two years of age have failed to demonstrate beneficial effects on disease-related neuropsychological deficits.
View Article and Find Full Text PDFBiol Direct
January 2025
Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
Background: Liquid-liquid phase separation (LLPS) is essential for the formation of membraneless organelles and significantly influences cellular compartmentalization, chromatin remodeling, and gene regulation. Previous research has highlighted the critical function of liquid-liquid biopolymers in the development of hepatocellular carcinoma (HCC).
Methods: This study conducted a comprehensive review of 3,685 liquid-liquid biopolymer regulators, leading to the development of a LLPS related Prognostic Risk Score (LPRS) for HCC through bootstrap-based univariate Cox, Random Survival Forest (RSF), and LASSO analyses.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!