In principle, polymerization tends to produce amorphous or poorly crystalline materials. Efficiently producing high-quality single crystals by polymerization in solvent remains as an unsolved issue in chemistry, especially for covalent organic frameworks (COFs) with highly complex structures. To produce μm-sized single crystals, the growth time is prolonged to >15 days, far away from the requirements in practical applications. Here, we find supercritical CO (sc-CO) accelerates single-crystal polymerization by 10,000,000 folds, and produces two-dimensional (2D) COF single crystals with size up to 0.2 mm within 2~5 min. Although it is the fastest single-crystal polymerization, the growth in sc-CO leads to not only the largest crystal size of 2D COFs, but also higher quality with improved photoconductivity performance. This work overcomes traditional concept on low efficiency of single-crystal polymerization, and holds great promise for future applications owing to its efficiency, industrial compatibility, environmental friendliness and universality for different crystalline structures and linkage bonds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382702PMC
http://dx.doi.org/10.1038/s41467-021-24842-xDOI Listing

Publication Analysis

Top Keywords

single-crystal polymerization
16
single crystals
12
covalent organic
8
organic frameworks
8
polymerization
6
ultra-fast single-crystal
4
polymerization large-sized
4
large-sized covalent
4
frameworks principle
4
principle polymerization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!