Variational inference using approximate likelihood under the coalescent with recombination.

Genome Res

Department of Computer Science, Rice University, Houston, Texas 77005, USA.

Published: November 2021

Coalescent methods are proven and powerful tools for population genetics, phylogenetics, epidemiology, and other fields. A promising avenue for the analysis of large genomic alignments, which are increasingly common, is coalescent hidden Markov model (coalHMM) methods, but these methods have lacked general usability and flexibility. We introduce a novel method for automatically learning a coalHMM and inferring the posterior distributions of evolutionary parameters using black-box variational inference, with the transition rates between local genealogies derived empirically by simulation. This derivation enables our method to work directly with three or four taxa and through a divide-and-conquer approach with more taxa. Using a simulated data set resembling a human-chimp-gorilla scenario, we show that our method has comparable or better accuracy to previous coalHMM methods. Both species divergence times and population sizes were accurately inferred. The method also infers local genealogies, and we report on their accuracy. Furthermore, we discuss a potential direction for scaling the method to larger data sets through a divide-and-conquer approach. This accuracy means our method is useful now, and by deriving transition rates by simulation, it is flexible enough to enable future implementations of various population models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8559707PMC
http://dx.doi.org/10.1101/gr.273631.120DOI Listing

Publication Analysis

Top Keywords

variational inference
8
coalhmm methods
8
transition rates
8
local genealogies
8
divide-and-conquer approach
8
method
6
inference approximate
4
approximate likelihood
4
likelihood coalescent
4
coalescent recombination
4

Similar Publications

The rapid growth of modern biobanks is creating new opportunities for large-scale genome-wide association studies (GWASs) and the analysis of complex traits. However, performing GWASs on millions of samples often leads to trade-offs between computational efficiency and statistical power, reducing the benefits of large-scale data collection efforts. We developed Quickdraws, a method that increases association power in quantitative and binary traits without sacrificing computational efficiency, leveraging a spike-and-slab prior on variant effects, stochastic variational inference and graphics processing unit acceleration.

View Article and Find Full Text PDF

Spinal tissue identification using a Forward-oriented endoscopic ultrasound technique.

Biomed Eng Lett

January 2025

School of Information Science and Technology, ShanghaiTech University, No. 393 Middle Huaxia Road, Pudong New District, Shanghai, 201210 China.

The limited imaging depth of optical endoscope restrains the identification of tissues under surface during the minimally invasive spine surgery (MISS), thus increasing the risk of critical tissue damage. This study is proposed to improve the accuracy and effectiveness of automatic spinal soft tissue identification using a forward-oriented ultrasound endoscopic system. Total 758 ex-vivo soft tissue samples were collected from ovine spines to create a dataset with four categories including spinal cord, nucleus pulposus, adipose tissue, and nerve root.

View Article and Find Full Text PDF

Deep learning-based medical image analysis has shown strong potential in disease categorization, segmentation, detection, and even prediction. However, in high-stakes and complex domains like healthcare, the opaque nature of these models makes it challenging to trust predictions, particularly in uncertain cases. This sort of uncertainty can be crucial in medical image analysis; diabetic retinopathy is an example where even slight errors without an indication of confidence can have adverse impacts.

View Article and Find Full Text PDF

Existing emotion-driven music generation models heavily rely on labeled data and lack interpretability and controllability of emotions. To address these limitations, a semi-supervised emotion-driven music generation model based on category-dispersed Gaussian mixture variational autoencoders is proposed. Initially, a controllable music generation model is introduced, which disentangles and manipulates rhythm and tonal features, enabling controlled music generation.

View Article and Find Full Text PDF

Empirical Bayes Linked Matrix Decomposition.

Mach Learn

October 2024

Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, 55455, MN, USA.

Data for several applications in diverse fields can be represented as multiple matrices that are linked across rows or columns. This is particularly common in molecular biomedical research, in which multiple molecular "omics" technologies may capture different feature sets (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!