Metal accumulation varies with life history, size, and development of larval amphibians.

Environ Pollut

US Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT, 59812, USA; Wildlife Biology Program, W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, MT, 59812, USA.

Published: October 2021

Amphibian larvae are commonly used as indicators of aquatic ecosystem health because they are susceptible to contaminants. However, there is limited information on how species characteristics and trophic position influence contaminant loads in larval amphibians. Importantly, there remains a need to understand whether grazers (frogs and toads [anurans]) and predators (salamanders) provide comparable information on contaminant accumulation or if they are each indicative of unique environmental processes and risks. To better understand the role of trophic position in contaminant accumulation, we analyzed composite tissues for 10 metals from larvae of multiple co-occurring anuran and salamander species from 20 wetlands across the United States. We examined how metal concentrations varied with body size (anurans and salamanders) and developmental stage (anurans) and how the digestive tract (gut) influenced observed metal concentrations. Across all wetlands, metal concentrations were greater in anurans than salamanders for all metals tested except mercury (Hg), selenium (Se), and zinc (Zn). Concentrations of individual metals in anurans decreased with increasing weight and developmental stage. In salamanders, metal concentrations were less correlated with weight, indicating diet played a role in contaminant accumulation. Based on batches of similarly sized whole-body larvae compared to larvae with their digestive tracts removed, our results indicated that tissue type strongly affected perceived concentrations, especially for anurans (gut represented an estimated 46-97% of all metals except Se and Zn). This suggests the reliability of results based on whole-body sampling could be biased by metal, larval size, and development. Overall, our data shows that metal concentrations differs between anurans and salamanders, which suggests that metal accumulation is unique to feeding behavior and potentially trophic position. To truly characterize exposure risk in wetlands, species of different life histories, sizes and developmental stages should be included in biomonitoring efforts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.117638DOI Listing

Publication Analysis

Top Keywords

metal concentrations
20
trophic position
12
contaminant accumulation
12
anurans salamanders
12
metal
8
metal accumulation
8
size development
8
larval amphibians
8
developmental stage
8
concentrations
7

Similar Publications

Manganese (Mn)-sensing riboswitches protect bacteria from Mn toxicity by upregulating expression of Mn exporters. The Mn aptamers share key features but diverge in other important elements, including within the metal-binding core. Although X-ray crystal structures of isolated aptamers exist, these structural snapshots lack crucial details about how the aptamer communicates the presence or absence of ligand to the expression platform.

View Article and Find Full Text PDF

Solvometallurgical recovery of antimony from waste polyvinyl chloride plastic and co-extraction of organic additives.

RSC Adv

January 2025

Waste Recycling Technologies, Materials & Chemistry Unit, Flemish Institute for Technological Research, VITO N.V. Boeretang 200 B-2400 Mol Belgium

Antimony is a critical raw material in Europe wherein for 43% of its market share it is applied in the form of antimony trioxide as a fire retardant in plastics. Currently, antimony recycling from waste plastics does not take place and has been scarcely studied. In this work, a process was developed to extract antimony from a soft PVC material and recover it as SbClO.

View Article and Find Full Text PDF

Porous Materials for Early Diagnosis of Neurodegenerative Diseases.

Adv Healthc Mater

January 2025

Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India.

Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases.

View Article and Find Full Text PDF

Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.

Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.

View Article and Find Full Text PDF

Historical record of trace elements since MIS 2 in a sediment core of Laizhou Bay, China.

Environ Monit Assess

January 2025

Sinopec Offshore Oilfield Services Company, Shanghai, 201208, China.

The concentration of trace elements in sediments is a critical element in the quality of nearshore environments. Geochemical background values are the normal concentrations of trace elements in the natural environment, and the use of different background values has resulted in different evaluations. Trace element (Cu, Pb, Zn, Cr, Cd, As, and Hg) concentration profiles along a sediment core were investigated to obtain background values and to assess the depositional processes and contamination levels in Laizhou Bay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!