Heterogeneous ice nucleation plays an important role in many environmental processes such as ice cloud formation, freezing of water bodies or biological freeze protection in the cryosphere. New information is needed about the seasonal availability, nature, and activity of ice nucleating particles (INPs) in alpine environments. These INPs trigger the phase transition from liquid water to solid ice at elevated subzero temperatures. We collected water samples from a series of alpine rivers and lakes (two valleys and their rivers, an artificial pond, and a natural lake system) in Obergurgl, Austria in June 2016, July 2016, November 2016, and May 2017. Each alpine river and lake was sampled multiple times across different seasons, depending on site access during different times of the year. Water samples were filtered through a 0.22 μm membrane filter to separate microbial INPs from the water, and both fractions were analyzed for ice nucleation activity (INA) by an emulsion freezing method. Microorganisms were cultured from the filters, and the cultures then analyzed for INA. Portions of the filtered samples were concentrated by lyophilization to observe potential enhancement of INA. Two sediment samples were taken as reference points for inorganic INPs. Sub-micron INPs were observed in all of the alpine water sources studied, and a seasonal shift to a higher fraction of microbial ice nucleators cultured on selective media was observed during the winter collections. Particles larger than 0.22 μm showed INA, and microbes were cultured from this fraction. Results from 60 samples gave evidence of a seasonal change in INA, presence of submicrometer INPs, and show the abundance of culturable microorganisms, with late spring and early summer showing the most active biological INPs. With additional future research on this topic ski resorts could make use of such knowledge of geographical and seasonal trends of microbial INPs in freshwater habitats in order to improve the production of artificial snow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.149442 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
Ice interfaces are pivotal in mediating key chemical and physical processes such as heterogeneous chemical reactions in the environment, ice nucleation, and cloud microphysics. At the ice surface, water molecules form a quasi-liquid layer (QLL) with properties distinct from those of the bulk. Despite numerous experimental and theoretical studies, a molecular-level understanding of the QLL has remained elusive.
View Article and Find Full Text PDFSci Rep
January 2025
Mechanical Engineering Department, University of South Florida, Tampa, FL, 33620, USA.
We report on discovering the homogeneous boiling within a liquid film residual resting in equilibrium over a melting ice block. This phenomenon was induced via longwave infrared radiation generated by a continuous wave [Formula: see text] laser. This investigation employed a high-speed camera and the Schlieren visualization technique.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Department for Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Ice-nucleating proteins (INPs) from bacteria like are among the most effective ice nucleators known. However, large INP aggregates with maximum ice nucleation activity (at approximately -2 °C) typically account for less than 1% of the overall ice nucleation activity in bacterial samples. This study demonstrates that polyols significantly enhance the assembly of INPs into large aggregates, dramatically improving bacterial ice nucleation efficiency.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9.
We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Materials Science, University of Tsukuba, Tsukuba 305-8573, Ibaraki, Japan.
Amber is a fragile (in Angell's classification) natural glass that has performed maturation processes over geological time. The terahertz dynamics of Baltic amber that was about 40 million years old were studied by terahertz time-domain spectroscopy (THz-TDS) in the frequency range of 0.2 and 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!