Metal-based flocculants are commonly used for biomass harvesting in microalgae-based bio-refineries. Besides the high separation efficiency, additional aspects should be considered, related to the toxicity of metals for the algal biomass. Partitioning tests for commonly used flocculants (i.e., FeCl and Al(SO)) showed that metals were mostly transferred to the solid phase with more than 95% of dosed metal ending up into the biomass, and low metal concentrations in the liquid effluent (lower than 0.4 mg L for both metals), thus allowing for water reuse. Photosynthesis inhibition was tested on microalgae and microalgae-bacteria cultures, using a standardized photo-respirometry protocol in which typical concentrations used during coagulation-flocculation were assessed. Modelling dose-response curves, concentrations corresponding to 50% inhibition (IC) were obtained, describing short-term effects. The obtained IC ranged from 13.7 to 28.3 mg Al L for Al, and from 127.9 to 195.8 mg Fe L for Fe, showing a higher toxicity for the Al-based flocculant. The recovery of photosynthesis inhibition was also quantified, to evaluate the possibility of reusing/recycling the harvested biomass. The results highlighted that the residual photosynthetic activities, evaluated after 1 h and 24 h of exposure to metals were partially recovered, especially for Al, passing from 67.3% to 94.6% activity, respectively, while long-term Fe effects were stronger (passing from 64.9% to 77.6% activity). A non-toxic flocculant (cationic starch) was finally tested, excluding potential effects due to biomass aggregation, as the reduction of photosynthetic activity only reached 3.4%, compared to control. Relevant modifications to the light availability and the optical properties of algal suspensions were assessed, identifying a strong effect of iron which caused an increase of the light absorbance up to approximately 40% at high Fe concentrations. Possible implications of dosing metallic flocculants in MBWWT processes are discussed, and suggestions are given to perform inhibition tests on flocculating chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.149395 | DOI Listing |
JMIR Form Res
January 2025
Department of Psychology, The University of Texas at San Antonio, San Antonio, TX, United States.
Background: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be unreliable due to discrepancies in what is reported versus the actual visual patterns.
View Article and Find Full Text PDFLangmuir
January 2025
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
Herein, first, MIL-125 samples were synthesized via a hydrothermal method. Then, Ag species were doping on the surface of MIL-125 samples via the photolysis of silver nitrate. Finally, the Z-scheme MIL-125/Ag/BiOBr composite was synthesized via a directed liquid assembly method.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
Metal-organic frameworks (MOFs) hold great potential in gas separation and storage. Graph neural networks (GNNs) have proven effective in exploring structure-property relationships and discovering new MOF structures. Unlike molecular graphs, crystal graphs must consider the periodicity and patterns.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Advanced Research Support Center, Ehime University, Ehime 791-0295, Japan.
Precise prefractionation of proteome samples is a potent method for realizing in-depth analysis in top-down proteomics. PEPPI-MS (Passively Eluting Proteins from Polyacrylamide gels as Intact species for MS), a gel-based sample fractionation method, enables high-resolution proteome fractionation based on molecular weight by highly efficient extraction of proteins from polyacrylamide gels after SDS-PAGE separation. Thereafter it is essential to effectively remove contaminants such as CBB and SDS from the PEPPI fraction prior to mass spectrometry.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog Weg 2, 8093 Zurich, Switzerland.
Relaxation-induced dipolar modulation enhancement (RIDME) is a pulse EPR experiment originally designed to determine distances between spin labels. However, RIDME has several features that make it an efficient tool in a number of "nonconventional" applications, away from the original purpose of this pulse experiment. RIDME appears to be an interesting experiment to probe longitudinal electron spin dynamics, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!