Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human platelet lysate (HPL) is a complex mixture of potent bioactive molecules instrumental in tissue repair and regeneration. Due to their remarkable safety, cost-effective production, and availability at global level from collected platelet concentrates, HPLs can become a powerful biotherapy for various therapeutic applications, if standardized and carefully validated through pre-clinical and clinical studies. In this work, the possibility to use a tailor-made HPL as a corneal transplant alternative to treat the gradual decrease in the number of corneal endothelial cells (CECs) associated with aging, was evaluated. The HPL preparation was thoroughly characterized using various proteomics tools that revealed a remarkable richness in multiple growth factors and antioxidants. Treatment of B4G12 and BCE C/D-1b CECs with the HPL increased their viability, enhanced the wound closure rate, and maintained cell growth and typical hexagonal morphology. Besides, this HPL significantly protected against tert-butyl hydroperoxide (TBHP)-induced oxidative stress as evidenced by increasing CEC viability, decreased cell death and reactive oxygen species formation, and enhanced antioxidant capacity. Proteomics analysis of treated CECs confirmed that HPL treatment triggered the corneal healing pathway and enhanced oxidative stress. These data strongly support further pre-clinical evaluation of this tailor-made HPL as a novel CEC regeneration biotherapy. HPL treatment may eventually represent a pragmatic and cost-effective alternative to corneal transplant to treat damages of the corneal endothelium which is a major cause of blindness worldwide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2021.112046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!