AI Article Synopsis

  • The study focuses on using metakaolin-based geopolymer (MKBG) as a new method to remove dye pollution, specifically Basic Blue 7 (BB7), from contaminated water.
  • Through a structured approach using the Box-Behnken design, researchers optimized various parameters like pH and temperature to maximize BB7 removal, achieving up to 96% efficiency in batch systems.
  • The findings indicate that MKBG is not only effective and reusable for multiple adsorption cycles but also offers a viable solution for treating water polluted with basic dyes.

Article Abstract

One of the most important environmental and health issues today is the elimination of the dye pollution from the contaminated water ecosystem. The use of geopolymers to eliminate such contaminants has recently emerged as a promising alternative. In this study, metakaolin based geopolymer (MKBG) was synthesized to be a promising adsorbent for Basic Blue 7 (BB7). To optimize the input parameters (solution pH, MKBG dose, mixing time, temperature, mixing speed, column diameter, and flow rate) towards BB7 removal by MKBG, a Box-Behnken design (BBD) was employed to develop the response model, followed by numerical optimization. The quadratic models correlating the adsorption variables to BB7 adsorption yield as responses were developed for batch and dynamic flow systems. The pseudo-second-order model accurately predicted the BB7 adsorption kinetics on MKBG. Decolorization yields of BB7 in batch and continuous systems reached 96 % and 56 %, respectively. The Langmuir model accurately described equilibrium data, thereby justifying monolayer and homogeneous adsorption. The MKBG demonstrated significant reusability up to 20 dynamic flow adsorption cycles. IR, SEM, and zeta potential measurements were used to describe the sorbent structure, and the mechanism of MKBG-BB7 interaction was assessed. Overall, MKBG offers a good application potential for the treatment of basic dye contaminated waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.113548DOI Listing

Publication Analysis

Top Keywords

dynamic flow
12
batch dynamic
8
bb7 adsorption
8
model accurately
8
mkbg
6
bb7
5
adsorption
5
design modeling
4
modeling decolorization
4
decolorization characteristics
4

Similar Publications

This study aims to evaluate the efficiency and energy release characteristics of different types of coal in pulse detonation engines (PDE) to advance the development of deep coal fluidization detonation technology, achieving more efficient and cleaner coal utilization. Using a custom PDE setup, experiments were conducted with four coal types at mass flow rates from 30 to 120 g/s. High-frequency pressure sensors assessed pressure dynamics and detonation wave propagation, complemented by numerical simulations for accuracy.

View Article and Find Full Text PDF

This study used Raman and near-infrared (NIR) spectroscopy to monitor small real-time changes in powder blends and tablets in low-dose pharmaceutical formulations. The research aims to enhance process analytical technology (PAT) in pharmaceutical manufacturing, ensuring high-quality and uniform products with applications to produce drugs with narrow therapeutic indices (NTI). The study utilizes Raman and NIR spatially resolved spectroscopy (SRS) techniques to monitor a moderate cohesive material's active pharmaceutical ingredient (API) concentrations during manufacturing.

View Article and Find Full Text PDF

Preserved but Un-Sustained Responses to Bids for Dyadic Engagement in School-Age Children with Autism.

J Autism Dev Disord

January 2025

Center for Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave CURE-3, Seattle, WA, 98101, USA.

Purpose: Dynamic eye-tracking paradigms are an engaging and increasingly used method to study social attention in autism. While prior research has focused primarily on younger populations, there is a need for developmentally appropriate tasks for older children.

Methods: This study introduces a novel eye-tracking task designed to assess school-aged children's attention to speakers involved in conversation.

View Article and Find Full Text PDF

Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.

View Article and Find Full Text PDF

Flow-Based Coronary Artery Bypass Graft Patency Metrics: Uncertainty Quantification Simulations to Guide Development.

Cardiovasc Eng Technol

January 2025

Transonic Systems Inc., 34 Dutch Mill Road, Ithaca, New York, 14850, USA.

Purpose: Over time, transit time flow measurement (TTFM) has proven itself as a simple and effective tool for intra-operative evaluation of coronary artery bypass grafts (CABGs). However, metrics used to screen for possible technical error show considerable spread, preventing the definition of sharp cut-off values to distinguish between patent, questionable, and failed grafts. The simulation study presented in this paper aims to quantify this uncertainty for commonly used patency metrics, and to identify the most important physiological parameters influencing it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!