Paper industries are water-intensive industries that produce large amount of wastewater containing dyes, toxicity and high nutrient content. These industries require sustainable technology for their waste disposal and MEC could be one of them. However, effective MEC operation at neutral pH and ambient temperature requires economical and efficient cathodes that are capable to treat indusial wastewater along with recovery of energy/biohydrogen. Co-deposits of Nickel, Nickel-Cobalt and Nickel-Cobalt-Phosphorous on the surface of SS and Cu base metals distinctly were used as cathodes in MEC for the concurrent treatment of real paper industry wastewater and biohydrogen production. MECs were utilized in batch mode at neutral pH, applied voltage of 0.6 V and 30 ± 2 °C temperature with paper industry wastewater and activated sludge as microbial sources. The fabricated Nickel-Cobalt-Phosphorous gives the higher hydrogen production rate of 0.16 ± 0.002 m(H) md and 0.14 ± 0.002 m(H) m d respectively, with ~33-42 % treatment efficiency for a 500 ml wastewater in 7-day batch cycle in both the cases; while it is lowest in the case of the control cathodes (SS1 (0.07 ± 0.002 m(H) md) & Cu1 (0.06 ± 0.004 m(H) md)). It was also found that fabricated cathodes have the capability to treat industrial wastewater at ambient conditions efficiently with higher energy recovery. Prepared cathodes show enhanced hydrogen production and treatment efficiency as well as are competitive to some reported literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.113542 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Qingdao Qingli Environmental Protectionquipmen Co, LTD, Jiaozhou, 266300, China.
With the growing demand for nickel in the stainless steel and battery industries, conventional methods of extracting nickel from ores face challenges such as high production costs and environmental concerns. This study proposes a new process for the recovery of nickel metal and the production of nickel-iron alloys from nickel-bearing scrap. The reduction rates of nickel and iron oxides were investigated by optimizing the roasting temperature, time, and C/O ratio, and the process was optimized using response surface methodology (RSM).
View Article and Find Full Text PDFFood Chem X
January 2025
Providence University, Department of Food and Nutrition, Taichung 43301, Taiwan.
Djulis ( Koidz.) is an endemic cereal plant to Taiwan that has been cultivated by Taiwanese aborigines for hundreds of years. Djulis Djulis is a well-known ruby cereal because it contains betanin and exhibits strong antioxidant activity.
View Article and Find Full Text PDFFood Chem X
January 2025
Research Center for Applied Zoology, National Research and Innovation Agency Republic of Indonesia, P.O. Box 16911, Bogor, Indonesia.
Indonesia, one of the largest tropical forests, offers a diverse range of nectar sources that contribute to the unique characteristics of forest honey. This study aims to investigate physicochemical and antioxidant properties of forest honey from three distinct regions of Indonesia. Key physicochemical parameters include moisture, color, electrical conductivity (EC), total dissolved solids (TDS), total suspended solids (TSS), density, diastase number (DN), hydroxymethylfurfural (HMF), pH, total acidity, ash content, protein content, and reducing sugars.
View Article and Find Full Text PDFFood Chem X
January 2025
Key Laboratory of Bulk Grain and Oil Deep Processing (Ministry of Education), Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
Parboiled rice can effectively retain Se during milling. In this study, Se-enriched rice grains were sprayed with three different concentrations of bioSeNPs fertilizer on the leaves at heading stage and then processed into parboiled and milled rice. The aim was to investigate the effects of parboiling on Se speciation, texture, microstructure, taste, and flavor of cooked rice.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Agriculture and Animal Science, Tribhuvan University, Nepal.
Nepal's economy is primarily dependent on agriculture, which generates a significant amount of GDP and jobs, particularly in rural areas. Despite its importance, the business still faces challenges from low productivity, traditional methods, inadequate access to advanced technologies, and increasing climate change sensitivity. These problems prevent agriculture from realizing its full potential to advance economic development, reduce poverty, and provide food security.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!