During replication of herpesviruses, capsids escape from the nucleus into the cytoplasm by budding at the inner nuclear membrane. This unusual process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid by oligomerizing into a hexagonal, membrane-bound scaffold. Here, we found that highly basic membrane-proximal regions (MPRs) of the NEC alter lipid order by inserting into the lipid headgroups and promote negative Gaussian curvature. We also find that the electrostatic interactions between the MPRs and the membranes are essential for membrane deformation. One of the MPRs is phosphorylated by a viral kinase during infection, and the corresponding phosphomimicking mutations block capsid nuclear egress. We show that the same phosphomimicking mutations disrupt the NEC-membrane interactions and inhibit NEC-mediated budding , providing a biophysical explanation for the phenomenon. Our data suggest that the NEC generates negative membrane curvature by both lipid ordering and protein scaffolding and that phosphorylation acts as an off switch that inhibits the membrane-budding activity of the NEC to prevent capsid-less budding. Herpesviruses are large viruses that infect nearly all vertebrates and some invertebrates and cause lifelong infections in most of the world's population. During replication, herpesviruses export their capsids from the nucleus into the cytoplasm by an unusual mechanism in which the viral nuclear egress complex (NEC) deforms the nuclear membrane around the capsid. However, how membrane deformation is achieved is unclear. Here, we show that the NEC from herpes simplex virus 1, a prototypical herpesvirus, uses clusters of positive charges to bind membranes and order membrane lipids. Reducing the positive charge or introducing negative charges weakens the membrane deforming ability of the NEC. We propose that the virus employs electrostatics to deform nuclear membrane around the capsid and can control this process by changing the NEC charge through phosphorylation. Blocking NEC-membrane interactions could be exploited as a therapeutic strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406295 | PMC |
http://dx.doi.org/10.1128/mBio.01548-21 | DOI Listing |
Poult Sci
December 2024
Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
Duck plague (DP), which is caused by duck plague virus (DPV), is an infectious disease that severely harms the waterfowl breeding industry. The UL14 protein (pUL14) is a tegument protein encoded by the UL14 gene, which is located in the unique long (UL) region of the DPV genome. DPV pUL14 plays a crucial role in viral replication, likely by interacting with host and viral proteins that have yet to be identified.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2025
State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China.
The nuclear-cytoplasmic trafficking of matrix proteins (M) is essential for henipavirus budding, with M protein ubiquitination playing a pivotal role in this dynamic process. Despite its importance, the intricacies of the M ubiquitination cascade have remained elusive. In this study, we elucidate a novel mechanism by which Nipah virus (NiV), a highly pathogenic henipavirus, utilizes a ubiquitination complex involving the E2 ubiquitin-conjugating enzyme RAD6A and the E3 ubiquitin ligase RAD18 to ubiquitinate the virus's M protein, thereby facilitating its nuclear-cytoplasmic trafficking.
View Article and Find Full Text PDFJ Virol
November 2024
State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) () is highly conserved in baculoviruses. Previous studies have shown that is required for the production of infectious budded virions (BVs). However, the functional role of in virion morphogenesis remains unknown.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America.
Viruses
September 2024
Institute for Virology and Forschungszentrum Immuntherapie, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany.
(1) Background: Intrinsic defense mechanisms are pivotal host strategies to restrict viruses already at early stages of their infection. Here, we addressed the question of how the autophagy receptor sequestome 1 (/p62, hereafter referred to as p62) interferes with human cytomegalovirus (HCMV) infection. (2) Methods: CRISPR/Cas9-mediated genome editing, mass spectrometry and the expression of p62 phosphovariants from recombinant HCMVs were used to address the role of p62 during infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!