Highly Basic Clusters in the Herpes Simplex Virus 1 Nuclear Egress Complex Drive Membrane Budding by Inducing Lipid Ordering.

mBio

Department of Molecular Biology and Microbiology, Graduate Program in Cellular, Molecular and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.

Published: August 2021

AI Article Synopsis

  • The herpesvirus nuclear egress complex (NEC) facilitates the escape of viral capsids from the nucleus by deforming the inner nuclear membrane, primarily through a hexagonal scaffold formation.
  • Highly basic regions of the NEC interact electrostatically with the membrane, affecting lipid organization and promoting membrane curvature necessary for capsid budding.
  • Phosphorylation of one of the NEC's membrane-proximal regions serves as an "off switch," disrupting its ability to deform the membrane and preventing the loss of viral capsids during replication.

Article Abstract

During replication of herpesviruses, capsids escape from the nucleus into the cytoplasm by budding at the inner nuclear membrane. This unusual process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid by oligomerizing into a hexagonal, membrane-bound scaffold. Here, we found that highly basic membrane-proximal regions (MPRs) of the NEC alter lipid order by inserting into the lipid headgroups and promote negative Gaussian curvature. We also find that the electrostatic interactions between the MPRs and the membranes are essential for membrane deformation. One of the MPRs is phosphorylated by a viral kinase during infection, and the corresponding phosphomimicking mutations block capsid nuclear egress. We show that the same phosphomimicking mutations disrupt the NEC-membrane interactions and inhibit NEC-mediated budding , providing a biophysical explanation for the phenomenon. Our data suggest that the NEC generates negative membrane curvature by both lipid ordering and protein scaffolding and that phosphorylation acts as an off switch that inhibits the membrane-budding activity of the NEC to prevent capsid-less budding. Herpesviruses are large viruses that infect nearly all vertebrates and some invertebrates and cause lifelong infections in most of the world's population. During replication, herpesviruses export their capsids from the nucleus into the cytoplasm by an unusual mechanism in which the viral nuclear egress complex (NEC) deforms the nuclear membrane around the capsid. However, how membrane deformation is achieved is unclear. Here, we show that the NEC from herpes simplex virus 1, a prototypical herpesvirus, uses clusters of positive charges to bind membranes and order membrane lipids. Reducing the positive charge or introducing negative charges weakens the membrane deforming ability of the NEC. We propose that the virus employs electrostatics to deform nuclear membrane around the capsid and can control this process by changing the NEC charge through phosphorylation. Blocking NEC-membrane interactions could be exploited as a therapeutic strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406295PMC
http://dx.doi.org/10.1128/mBio.01548-21DOI Listing

Publication Analysis

Top Keywords

nuclear egress
16
egress complex
12
nuclear membrane
12
membrane capsid
12
membrane
10
highly basic
8
herpes simplex
8
simplex virus
8
lipid ordering
8
replication herpesviruses
8

Similar Publications

Identification and subcellular localization of proteins that interact with Duck plague virus pUL14 in infected host cells.

Poult Sci

December 2024

Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, PR China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, PR China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China.

Duck plague (DP), which is caused by duck plague virus (DPV), is an infectious disease that severely harms the waterfowl breeding industry. The UL14 protein (pUL14) is a tegument protein encoded by the UL14 gene, which is located in the unique long (UL) region of the DPV genome. DPV pUL14 plays a crucial role in viral replication, likely by interacting with host and viral proteins that have yet to be identified.

View Article and Find Full Text PDF

The nuclear-cytoplasmic trafficking of matrix proteins (M) is essential for henipavirus budding, with M protein ubiquitination playing a pivotal role in this dynamic process. Despite its importance, the intricacies of the M ubiquitination cascade have remained elusive. In this study, we elucidate a novel mechanism by which Nipah virus (NiV), a highly pathogenic henipavirus, utilizes a ubiquitination complex involving the E2 ubiquitin-conjugating enzyme RAD6A and the E3 ubiquitin ligase RAD18 to ubiquitinate the virus's M protein, thereby facilitating its nuclear-cytoplasmic trafficking.

View Article and Find Full Text PDF

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) () is highly conserved in baculoviruses. Previous studies have shown that is required for the production of infectious budded virions (BVs). However, the functional role of in virion morphogenesis remains unknown.

View Article and Find Full Text PDF

CLCC1 promotes membrane fusion during herpesvirus nuclear egress.

bioRxiv

September 2024

Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America.

Article Synopsis
  • Researchers studied how ancient viruses, like herpes, move their protective capsids from the nucleus to the cytoplasm in infected cells.
  • They found that these viruses use a process involving a host protein called CLCC1, crucial for the fusion of capsids with the inner nuclear membrane.
  • The absence of CLCC1 hampers viral spread and leads to problems within the cell's structures, indicating that viruses have evolved to exploit ancient cellular mechanisms for their transmission.
View Article and Find Full Text PDF

(1) Background: Intrinsic defense mechanisms are pivotal host strategies to restrict viruses already at early stages of their infection. Here, we addressed the question of how the autophagy receptor sequestome 1 (/p62, hereafter referred to as p62) interferes with human cytomegalovirus (HCMV) infection. (2) Methods: CRISPR/Cas9-mediated genome editing, mass spectrometry and the expression of p62 phosphovariants from recombinant HCMVs were used to address the role of p62 during infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!