Classification of radioxenon spectra with deep learning algorithm.

J Environ Radioact

Preparatory Commission for the Comprehensive Nuclear-Test-Ban-Treaty Organization, Provisional Technical Secretariat, VIC, Vienna, Austria. Electronic address:

Published: October 2021

In this study, we propose for the first time a model of classification for Beta-Gamma coincidence radioxenon spectra using a deep learning approach through the convolution neural network (CNN) technique. We utilize the entire spectrum of actual data from a noble gas system in Charlottesville (USX75 station) between 2012 and 2019. This study shows that the deep learning categorization can be done as an important pre-screening method without directly involving critical limits and abnormal thresholds. Our results demonstrate that the proposed approach of combining nuclear engineering and deep learning is a promising tool for assisting experts in accelerating and optimizing the review process of clean background and CTBT-relevant samples with high classification average accuracies of 92% and 98%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2021.106718DOI Listing

Publication Analysis

Top Keywords

deep learning
16
radioxenon spectra
8
spectra deep
8
classification radioxenon
4
deep
4
learning
4
learning algorithm
4
algorithm study
4
study propose
4
propose time
4

Similar Publications

hERGAT: predicting hERG blockers using graph attention mechanism through atom- and molecule-level interaction analyses.

J Cheminform

January 2025

Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, Republic of Korea.

The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources.

View Article and Find Full Text PDF

Background: Assessing the difficulty of impacted lower third molar (ILTM) surgical extraction is crucial for predicting postoperative complications and estimating procedure duration. The aim of this study was to evaluate the effectiveness of a convolutional neural network (CNN) in determining the angulation, position, classification and difficulty index (DI) of ILTM. Additionally, we compared these parameters and the time required for interpretation among deep learning (DL) models, sixth-year dental students (DSs), and general dental practitioners (GPs) with and without CNN assistance.

View Article and Find Full Text PDF

Virtual biopsy for non-invasive identification of follicular lymphoma histologic transformation using radiomics-based imaging biomarker from PET/CT.

BMC Med

January 2025

Department of Nuclear Medicine, West China Hospital, Sichuan University, Guoxue Alley, Address: No.37, Chengdu City, Sichuan, 610041, China.

Background: This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.

Methods: A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images.

View Article and Find Full Text PDF

Background: Early detection and diagnosis of cancer are vital to improving outcomes for patients. Artificial intelligence (AI) models have shown promise in the early detection and diagnosis of cancer, but there is limited evidence on methods that fully exploit the longitudinal data stored within electronic health records (EHRs). This review aims to summarise methods currently utilised for prediction of cancer from longitudinal data and provides recommendations on how such models should be developed.

View Article and Find Full Text PDF

Whole slide image based deep learning refines prognosis and therapeutic response evaluation in lung adenocarcinoma.

NPJ Digit Med

January 2025

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.

Existing prognostic models are useful for estimating the prognosis of lung adenocarcinoma patients, but there remains room for improvement. In the current study, we developed a deep learning model based on histopathological images to predict the recurrence risk of lung adenocarcinoma patients. The efficiency of the model was then evaluated in independent multicenter cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!