Objective: Low molecular weight compounds that reduce the expression of MMP13 at the mRNA level might serve as disease-modifying osteoarthritis (OA) drugs (DMOADs). The objective of this study was to identify a candidate DMOAD that targets MMP13 expression.
Design: High-throughput screening was performed to identify compounds that suppress inflammatory cytokine-induced MMP13 expression. Ingenuity pathway analysis (IPA) using isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analysis was conducted to identify signaling pathways related to cytokines. MMP13 expression in chondrocytes was evaluated through RT-qPCR and western blotting analyses. Additionally, 10-week-old mice were subjected to destabilization of the medial meniscus (DMM) surgery to induce OA and were sacrificed 12 weeks post-surgery for pathological examination. OA was evaluated using the OARSI scoring system.
Results: Colchicine was identified as a DMOAD candidate as it inhibited inflammatory cytokine-induced MMP13 expression in vitro, and the colchicine-administered mice with DMM presented significantly lower OARSI scores (adjusted P: 0.0242, mean difference: 1.6, 95% confidence interval (CI) of difference: 0.1651-3.035) and significantly lower synovial membrane inflammation scores (adjusted P: 0.0243, mean difference: 0.6, 95% CI of difference: 0.06158-1.138) than mice with DMM. IPA further revealed that components of the Rho signaling pathways are regulated by cytokines and colchicine. IL-1β and TNF-α activate RAC1 and SRC signals, respectively, leading to the phosphorylation of PLC-γ1 and synergistic induction of MMP13 expression. Most notably, colchicine abrogates inflammatory cytokine-induced phosphorylation of PLC-γ1, leading to the induction of MMP13 expression.
Conclusions: Colchicine is a potential DMOAD candidate that inhibits MMP13 expression and consequent cartilage degradation by disrupting the SRC/RAC1-phospho-PLCγ1-Ca signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8542595 | PMC |
http://dx.doi.org/10.1016/j.joca.2021.08.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!