The optical control of polarization switching is attracting tremendous interest because photoirradiation stands out as a nondestructive, noncontact, and remote-control means beyond an electric or strain field. The current research mainly uses various photoexcited electronic effects to achieve the photocontrol polarization, such as a light-driven flexoelectric effect and a photovoltaic effect. However, since photochromism was discovered in 1867, the structural phase transition caused by photoisomerization has never been associated with ferroelectricity. Here, we successfully synthesized an organic photochromic ferroelectric with polar space group 2, 3,4,5-trifluoro--(3,5-di--butylsalicylidene)aniline, whose color can change between yellow and orange via laser illumination. Its dielectric permittivity and spontaneous polarization can be switched reversibly with a photoinduced phase transition triggered by structural photoisomerization between the enol form and the -keto form. To our knowledge, this is the first photoswitchable ferroelectric crystal to achieve polarization switching through a structural phase transition triggered by photoisomerization. This finding paves the way toward photocontrol of smart materials and biomechanical applications in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c06108 | DOI Listing |
Alzheimers Dement
December 2024
Imperial College London, London, United Kingdom.
Background: Neuroinflammation is a key component of Alzheimer's Disease (AD) pathology. Triggering receptor expressed on myeloid cells 2 (TREM2) is crucial to microglial involvement in AD, mediating trem2-dependent activation and Disease-Associated Microglia (DAM) polarization. However, GWAS revealed that loss-of-function mutations of its encoding gene are an important risk factor for AD.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, 2500, Australia.
Recently, the emergence of two-dimensional (2D) multiferroic materials has opened a new perspective for exploring topological states. However, instances of tuning topological phase transitions through ferroelectric (FE) polarization in 2D ferromagnetic (FM) materials are relatively rare. Here, we found that 11 single layer (SL) materials, named the MMGeX family, possess both FE and FM properties.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
Herein, we present a novel liquid crystal (LC)-based sensing platform utilizing microgel-stabilized Pickering LC droplets dispersed in water for simple and label-free detection of proteins in an aqueous environment. This could be achieved by tailoring the surface of 4-cyano-4'-pentylbiphenyl (5CB) LC droplets dispersed in aqueous medium through the interfacial adsorption of poly(-isopropylacrylamide) (PNIPAM) microgel particles, followed by the introduction of model surfactants, such as anionic sodium dodecyl sulfate and cationic dodecyltrimethylammonium bromide. These surfactant/microgel complex-coated LC droplets underwent a configurational transition from radial-to-bipolar under a polarized optical microscope, upon exposure to model proteins, namely bovine serum albumin and lysozyme.
View Article and Find Full Text PDFNat Microbiol
January 2025
River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, ENAC, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland.
Glacier-fed streams (GFS) feature among Earth's most extreme aquatic ecosystems marked by pronounced oligotrophy and environmental fluctuations. Microorganisms mainly organize in biofilms within them, but how they cope with such conditions is unknown. Here, leveraging 156 metagenomes from the Vanishing Glaciers project obtained from sediment samples in GFS from 9 mountains ranges, we report thousands of metagenome-assembled genomes (MAGs) encompassing prokaryotes, algae, fungi and viruses, that shed light on biotic interactions within glacier-fed stream biofilms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!