AI Article Synopsis

Article Abstract

Chemotherapy-induced cognitive impairment (CICI) has been observed in a large fraction of cancer survivors. Although many of the chemotherapeutic drugs do not cross the blood-brain barrier, following treatment, the structure and function of the brain are altered and cognitive dysfunction occurs in a significant number of cancer survivors. The means by which CICI occurs is becoming better understood, but there still remain unsolved questions of the mechanisms involved. The hypotheses to explain CICI are numerous. More than 50% of FDA-approved cancer chemotherapy agents are associated with reactive oxygen species (ROS) that lead to oxidative stress and activate a myriad of pathways as well as inhibit pathways necessary for proper brain function. Oxidative stress triggers the activation of different proteins, one in particular is tumor necrosis factor alpha (TNFα). Following treatment with various chemotherapy agents, this pro-inflammatory cytokine binds to its receptors at the blood-brain barrier and translocates to the parenchyma via receptor-mediated endocytosis. Once in brain, TNFα initiates pathways that may eventually lead to neuronal death and ultimately cognitive impairment. TNFα activation of the c-jun N-terminal kinases (JNK) and Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathways may contribute to both memory decline and loss of higher executive functions reported in patients after chemotherapy treatment. Chemotherapy also affects the brain's antioxidant capacity, allowing for accumulation of ROS. This review expands on these topics to provide insights into the possible mechanisms by which the intersection of oxidative stress and TNFΑ are involved in chemotherapy-induced cognitive impairment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561769PMC
http://dx.doi.org/10.1007/s00018-021-03925-4DOI Listing

Publication Analysis

Top Keywords

cognitive impairment
16
oxidative stress
16
chemotherapy-induced cognitive
12
intersection oxidative
8
cancer survivors
8
blood-brain barrier
8
chemotherapy agents
8
treatment chemotherapy
8
impairment
4
impairment focus
4

Similar Publications

Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.

Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.

Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.

View Article and Find Full Text PDF

Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.

View Article and Find Full Text PDF

Use of the Adaptive Behaviour Dementia Questionnaire in a Down Syndrome Specialty Clinic.

J Integr Neurosci

January 2025

Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA.

Objective: To study the use of a dementia screening tool in our clinic cohort of adults with Down syndrome.

Study Design: A retrospective chart review of patients with Down syndrome was conducted to follow the use of the Adaptive Behaviour Dementia Questionnaire (ABDQ) in a dementia screening protocol. The ABDQ results for patients aged 40 years and older at a Down syndrome specialty clinic program were assessed.

View Article and Find Full Text PDF

Background: Volume alterations in the parietal subregion have received less attention in Alzheimer's disease (AD), and their role in predicting conversion of mild cognitive impairment (MCI) to AD and cognitively normal (CN) to MCI remains unclear. In this study, we aimed to assess the volumetric variation of the parietal subregion at different cognitive stages in AD and to determine the role of parietal subregions in CN and MCI conversion.

Methods: We included 662 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 228 CN, 221 early MCI (EMCI), 112 late MCI (LMCI), and 101 AD participants.

View Article and Find Full Text PDF

Introduction: The effects of remimazolam (Re) in combination with andrographolide (AP) on learning, memory, and motor abilities in rats following cardiopulmonary bypass (CPB) surgery were studied.

Methods: We hypothesized that the combination of Re and AP could improve postoperative cognitive dysfunction (POCD) in rats after CPB by modulating nervous system inflammation. Cognitive function was assessed using the Morris Water Maze test, and the concentrations of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) in serum were measured by enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!