Platelet-Derived Extracellular Vesicle Functionalization of Ti Implants.

J Vis Exp

Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands; Health Research Institute of the Balearic Islands (IdISBa); Department of Fundamental Biology and Health Sciences, University of the Balearic Islands;

Published: August 2021

Similar Publications

Exosome-Like Vesicles from Callus Enhanced Wound Healing by Reducing LPS-Induced Inflammation.

J Microbiol Biotechnol

November 2024

Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea.

(LE), a medicinal plant from the Boraginaceae family, is traditionally used in East Asia for its therapeutic effects on skin conditions, including infections, inflammation, and wounds. Recently, the role of extracellular vesicles (EVs) as mediators of intercellular communication that regulate inflammation and promote tissue regeneration has garnered increasing attention in the field of regenerative medicine. This study investigates exosome-like vesicles derived from LE callus (LELVs) and their potential in enhancing wound healing.

View Article and Find Full Text PDF

Corneal Stromal Stem Cell-Derived Extracellular Vesicles Attenuate ANGPTL7 Expression in the Human Trabecular Meshwork.

Transl Vis Sci Technol

January 2025

Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.

View Article and Find Full Text PDF

Complement C3 of tumor-derived extracellular vesicles promotes metastasis of RCC via recruitment of immunosuppressive myeloid cells.

Proc Natl Acad Sci U S A

January 2025

Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China.

Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs).

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) represents an increasing public health concern. The underlying pathophysiological mechanisms of NAFLD remains unclear, and as a result, there is currently no specific therapy for this condition. However, recent studies focus on extracellular vesicles (EVs) as a novelty in their role in cellular communication.

View Article and Find Full Text PDF

Background: Prostate cancer (PC) is the most frequently diagnosed cancer in men and continues to be a major cause of cancer-related mortality worldwide. In recent years, non-coding RNAs (ncRNAs) have emerged as a significant focus in molecular biology research, playing a pivotal role in the development and progression of PC. This study employed bibliometric analysis to explore the global outputs, research hotspots, and future trends in ncRNA-related PC research over the past 20 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!