To solve the deterioration of effluent caused by low temperature in urban sewage treatment plant in cold areas, a new type of reactor was proposed, the biochemical environmental and low-temperature operating characteristics of the reactor were studied. Through analysis of flow simulation and dissolved oxygen (DO) distribution when the aeration rate was 0.6 m/h, it showed that there were many different DO environments in the reactor at the same time, which provided favourable conditions for various biochemical reactions. The operation test showed that the average effluent removal rate of COD, TN, NH-N and TP was 92.53%, 74.57%, 89.61% and 96.04%, respectively. And there were a variety of functional bacteria related to nitrogen and phosphorus removal in the system, most of them with strong adaptability at low temperatures. Among the dominant microorganisms, and were related to denitrification, and were related to phosphorous removal. Denitrifying phosphorus removal was the main way of phosphorus removal. Picrust2 results showed that the reactor operated well at low temperature, and the regional difference distribution of nitrification genes further confirmed the existence of functional zones in the reactor. The results showed that the Micro-pressure Double-cycle reactor worked well at low temperature, which provided a new idea and way for the upgrading of urban sewage treatment plants in cold areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2021.1972169 | DOI Listing |
J Environ Manage
January 2025
College of Eco-environmental Technology, Guangdong Industry Polytechnic University, Guangzhou, 510300, China.
Nitrogen-removal promotion is a significant problem when biological nitrogen removal is used to treat ammonium nitrogen (NH-N) wastewater with a low chemical oxygen demand (COD)/NH-N (C/N) ratio. In this work, the biological nitrogen removal capacity of the biological contact oxidation reactor (BCOR) system was enhanced through the enrichment of Acidobacteria. The system was successfully started from Day 1 to Day 50 and stably operated through temperature, pH, and dissolved oxygen (DO) regulation from Day 51 to Day 254.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Nanomaterials Laboratory, Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, India.
Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
Interaction of a novel dihydroxy dibenzoazacrown (HDTC) with various surfactants of different charges, for example, anionic (sodium dodecylsulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), cationic gemini (butanediyl-1,4-bis(dimethylcetylammonium bromide), 16-4-16), ionic liquid (1-hexadecyl-3-methylimidazolium chloride, CMImCl), and nonionic (polyoxyethylene sorbitan monostearate, Tween-60), has been investigated at a widespread range of surfactant concentrations (including premicellar, micellar, and postmicellar regime) in 15% (v/v) EtOH medium at room temperature. Several experimental techniques, viz., tensiometry, UV-vis spectroscopy, and steady-state fluorimetry, are implemented to explicate these interactions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States.
Whereas single crystals of organic compounds that respond to heat or light have been reported and studied in detail, studies on crystalline organic compounds that elicit an extreme mechanical response are relatively rare in the chemical literature. A tetrafluoro(aryl)sulfanylated bicyclopentane synthesized in our laboratory was discovered to exhibit such behavior; i.e.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Monolayer transition metal dichalcogenides are promising materials that not only are atomically thin but also have direct bandgaps, making them highly regarded in optics and optoelectronics. However, their photoluminescence exhibits almost random polarization at room temperature. The emission is also omnidirectional and weak due to the low quantum yield.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!