High entropy alloy nanoparticles (HEA-NPs) are reported to have superior performance in catalysis, energy storage, and conversion due to the broad range of elements that can be incorporated in these materials, enabling tunable activity, excellent thermal and chemical stability, and a synergistic catalytic effect. However, scaling the manufacturing of HEA-NPs with uniform particle size and homogeneous elemental distribution efficiently is still a challenge due to the required critical synthetic conditions where high temperature is typically involved. In this work, we demonstrate an efficient and scalable microwave heating method using carbon-based materials as substrates to fabricate HEA-NPs with uniform particle size. Due to the abundant functional group defects that can absorb microwave efficiently, reduced graphene oxide is employed as a model substrate to produce an average temperature reaching as high as ∼1850 K within seconds. As a proof-of-concept, we utilize this rapid, high-temperature heating process to synthesize PtPdFeCoNi HEA-NPs, which exhibit an average particle size of ∼12 nm and uniform elemental mixing resulting from decomposition nearly at the same time and liquid metal solidification without diffusion. Various carbon-based materials can also be employed as substrates, including one-dimensional carbon nanofibers and three-dimensional carbonized wood, which can achieve temperatures of >1400 K. This facile and efficient microwave heating method is also compatible with the roll-to-roll process, providing a feasible route for scalable HEA-NPs manufacturing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c05113DOI Listing

Publication Analysis

Top Keywords

microwave heating
12
particle size
12
high entropy
8
entropy alloy
8
alloy nanoparticles
8
hea-nps uniform
8
uniform particle
8
heating method
8
carbon-based materials
8
hea-nps
5

Similar Publications

Presently, researchers are placing emphasis on microwave absorption coating design while neglecting the research on materials that integrate both microwave absorption performance and mechanical properties. Here, robust FeSiAl/PEEK composites were prepared by a series process, including post ball-milling annealing, sol-gel method, and hot pressing. A detailed analysis of the electromagnetic (EM) parameters reveals the significant effects of morphology, filling ratio, and microstructure of FeSiAl on EM losses under a wide-temperature range.

View Article and Find Full Text PDF

Gradient Porous and Carbon Black-Integrated Cellulose Acetate Aerogel for Scalable Radiative Cooling.

Small

January 2025

School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.

Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.

View Article and Find Full Text PDF

In this paper, a microwave thermal imaging system (MTIS) has been presented for debonding detection of radar absorbing materials (RAMs). First, an overview of the mechanism underlying microwave heating and the fundamental principle of defect detection within RAMs is presented. Then, a multifunctional MTIS capable of performing both microwave lock-in thermography (MLIT) and long-pulse microwave thermography (LPMT) has been introduced, specifically tailored for the in situ inspection of RAMs.

View Article and Find Full Text PDF

The main aim of the study was to develop new fruit waste-derived activated carbons of high adsorption performance towards metals, metalloids, and polymers by the use of carbon dioxide (CO)-consuming, microwave-assisted activation. The authors compared morphology, surface chemistry, textural parameters, and elemental composition of precursors (chokeberry seeds, black currant seeds, orange peels), as well as biochars (BCs) and activated carbons (ACs) obtained from them. The adsorption mechanisms of metals (copper, cadmium), metalloids (arsenic, selenium), and macromolecular compounds (bacterial exopolysaccharide, ionic polyacrylamides) on the surface of selected materials were investigated in one- and two-component systems.

View Article and Find Full Text PDF

Background: Radiochemical purity is a key criterion for the quality of radiopharmaceuticals used in clinical practice. The joint improvement of analytical methods capable of identifying related radiochemical impurities and determining the actual radiochemical purity, as well as the improvement of synthesis methods to minimize the formation of possible radiochemical impurities, is integral to the implementation of high-tech nuclear medicine procedures. PSMA-targeted radionuclide therapy with lutetium-177 has emerged as an effective treatment option for prostate cancer, and [Lu]Lu-PSMA-617 and [Lu]Lu-PSMA have achieved global recognition as viable radiopharmaceuticals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!