Purpose: The primary objective was to compare T2-FRFSE and T2-PROPELLER sequences for image quality. The secondary objective was to compare the ability to detect prostate lesions at MRI in the presence and absence of motion artefact using the 2 sequences.

Methods: 99 patients underwent 3 T MRI examination of the prostate, including T2-FRFSE and T2-PROPELLER sequences. All patients underwent prostate biopsy. Two independent readers rated overall image quality, presence of motion artefact, and blurring for both sequences using a 5-point Likert scale. Scores were compared for the whole group and for subgroups with and without significant motion artefact. Outcome for lesion detection at an MRI threshold of PI-RADS score ≥3 was compared between T2-FRFSE and T2-PROPELLER.

Results: The overall image quality was not significantly different between T2-FRFSE and T2-PROPELLER sequences (3.74 vs. 3.93, p = 0.275). T2-PROPELLER recorded a lesser degree of motion artefact (score 4.53 vs. 3.78, p <0.0001), but demonstrated greater image blurring (score 3.29 vs. 3.73, p <0.001). However, in a subgroup of patients with significant motion artefact on T2-FRFSE, the T2-PROPELLER sequence demonstrated significantly higher image quality (3.46 vs. 2.49, p <0.001). T2-FRFSE and T2-PROPELLER showed comparable positive predictive values for lesion detection at 93.2% and 97.7%, respectively.

Conclusions: T2-PROPELLER provides higher quality imaging in the presence of motion artefact, but T2-FRFSE is preferred in the absence of motion. T2-PROPELLER is therefore recommended as a secondary T2 sequence when imaging requires repeat acquisition due to motion artefact.

Download full-text PDF

Source
http://dx.doi.org/10.1177/08465371211030206DOI Listing

Publication Analysis

Top Keywords

image quality
16
motion artefact
16
t2-frfse t2-propeller
12
t2-propeller sequences
12
compared t2-frfse
8
lesion detection
8
objective compare
8
patients underwent
8
t2-propeller
5
t2-frfse
5

Similar Publications

Monolithic U-shaped crystal design for TOF-DOI detectors: a flat top vs. a tapered top.

Biomed Phys Eng Express

January 2025

Advanced Nuclear Medicine Science, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, JAPAN, Chiba, 263-8555, JAPAN.

For brain-dedicated positron emission tomography (PET) scanners, depth-of-interaction (DOI) information is essential to achieve uniform spatial resolution across the field-of-view (FOV) by minimizing parallax error. Time-of-flight (TOF) information can enhance the image quality. In this study, we proposed a novel monolithic U-shaped crystal design that had a tapered geometry to achieve good coincidence timing resolution (CTR) and DOI resolution simultaneously.

View Article and Find Full Text PDF

Background: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be unreliable due to discrepancies in what is reported versus the actual visual patterns.

View Article and Find Full Text PDF

Purpose: To assess if drusen volume can serve as structural clinical outcome marker in Malattia Leventinese (ML), and to evaluate whether cones or rods are more affected by its progression, using multimodal imaging and mesopic and two-color scotopic microperimetry.

Methods: This was a prospective monocentric cross-sectional cohort study of participants with genetically confirmed ML. Participants were classified according to morphology.

View Article and Find Full Text PDF

Introduction: Cardiac amyloidosis typically causes restrictive cardiomyopathy, in which the impairment of diastolic function is dominant. Echocardiography provides prognostic information through some important parameters: left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS). However, LVEF often remains preserved despite disease progression, and GLS is not routinely performed as it is limited by suboptimal image quality.

View Article and Find Full Text PDF

Background: Propofol is commonly used for pediatric MRIs to minimize patient movement. At our institution, intensivists typically administer a prophylactic 20 ml/kg saline bolus to maintain blood pressure (BP) during propofol sedation. This quality improvement project assessed whether a 10 ml/kg and a completely eliminated saline bolus are as effective as the standard 20 ml/kg bolus in completing pediatric propofol sedation and maintaining Mean Arterial Pressure (MAP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!