Escherichia coli K-12 has two distinguishable PriA-PriB replication restart pathways.

Mol Microbiol

Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, USA.

Published: October 2021

In Escherichia coli, PriA, PriB, PriC, and DnaT proteins mediate three pathways for Replication Restart called PriA-PriB, PriA-PriC, and PriC. PriA is crucial for two of the three pathways. Its absence leads to slow growth, high basal levels of SOS expression, poorly partitioning nucleoids, UV sensitivity, and recombination deficiency. PriA has ATPase and helicase activities and interacts with PriB, DnaT, and single-stranded DNA-binding protein (SSB). priA300 (K230R) and priA301 (C479Y) have no phenotype as single mutants, but each phenocopy a priA-null mutant combined with ∆priB. This suggested that the two priA mutations affected the helicase activity that is required for the PriA-PriC pathway. To further test this, the biochemical activities of purified PriA300 and PriA301 were examined. As expected, PriA300 lacks ATPase and helicase activities but retains the ability to interact with PriB. PriA301, however, retains significant PriB-stimulated helicase activity even though PriA301 interactions with PriB and DNA are weakened. A PriA300,301 variant retains only the ability to interact with DNA in vitro and phenocopies the priA-null phenotype in vivo. This suggests that there are two biochemically and genetically distinct PriA-PriB pathways. One uses PriB-stimulated helicase activity to free a region of ssDNA and the other uses helicase-independent remodeling activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541903PMC
http://dx.doi.org/10.1111/mmi.14802DOI Listing

Publication Analysis

Top Keywords

helicase activity
12
escherichia coli
8
replication restart
8
three pathways
8
atpase helicase
8
helicase activities
8
retains ability
8
ability interact
8
prib-stimulated helicase
8
helicase
5

Similar Publications

Identification of modulators of the ALT pathway through a native FISH-based optical screen.

Cell Rep

December 2024

Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators.

View Article and Find Full Text PDF

Objectives: To investigate the regulatory mechanism of aurora kinase B (AURKB) for promoting malignant phenotype of osteosarcoma cells.

Methods: HA-Vector or HA-AURKB was transfected in 293T cells to identify the molecules interacting with AURKB using immunoprecipitation combined with liquid chromatography-tandem mass spectrometry followed by verification with co-immunoprecipitation and Western blotting. In cultured osteosarcoma cells with lentivirus-mediated RNA interference of AURKB or DHX9 or their overexpression, the changes in cell proliferation, migration, and invasion activities were observed with EDU and Transwell assays.

View Article and Find Full Text PDF

RTEL1 is upregulated in gastric cancer and promotes tumor growth.

J Cancer Res Clin Oncol

December 2024

Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, Jiangsu, 214062, China.

Gastric cancer (GC) is one of the most common cancers worldwide, with increasing incidence and mortality rates. It is typically diagnosed at advanced stages, leading to a poor prognosis. GC is a highly heterogeneous disease and its progression is associated with complex interplay between genetic and environmental factors.

View Article and Find Full Text PDF

Unlabelled: Classical swine fever virus (CSFV) is a member of the genus within the family . The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle.

View Article and Find Full Text PDF

[Prokaryotic expression and helicase activity analysis of PDCoV NSP13].

Sheng Wu Gong Cheng Xue Bao

December 2024

College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.

Porcine deltacoronavirus (PDCoV) is a major pathogen causing fatal diarrhea in suckling piglets, and there is currently a lack of effective vaccines and drugs to prevent and control the virus. The nonstructural protein 13 (NSP13) serves as a virus-coded helicase and is considered to be a crucial target for antiviral drugs, making it imperative to investigate the helicase activity of NSP13. In this study, the gene of PDCoV was synthesized and integrated into the prokaryotic expression vector pET-28a to construct the recombinant plasmid pET-28a-NSP13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!