Among the diverse nanomaterials, gold nanoparticles (AuNps) are utilised for various therapeutic application due to the distinct physical, chemical properties and biocompatibility. Synthesis of gold nanoparticles using plants is the promising route. This method is low cost, eco-friendly and higher biological activities. In this present study, Gold nanoparticles were synthesised from fruit extract of fruit extract. Their anticancer and anti-inflammatory activity was evaluated against colorectal cancer cell line (HT29) and TNBS-induced zebrafish model. Highly stable tannin capped gold nanoparticles were synthesised from fruit extract broth of rapidly. Structural and functional properties of the synthesised nanoparticles were studied by Fourier transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM) equipped with energy-dispersive atomic X-ray spectroscopy (EDAX) and X-ray diffraction (XRD). All the characterisation studies reveal highly stable, crystalline, phytochemicals, mainly tannin doped, spherical, 28 nm controlled sized gold nanoparticles. The molecular mechanism of anticancer activity was studied by determining cancer markers' expression, which was studied using quantitative real-time polymerase chain reaction (qPCR). Antioxidative enzymes' status and apoptosis changes were also investigated. Synthesised nanoparticles brought a drastic reduction of all the tested cancer markers' expression. Notable changes in antioxidative enzymes' status and a good sign of apoptosis were observed in nanoparticles' treatment. The anti-inflammatory activity was studied against TNBS-induced zebrafish model, which was confirmed by determining inflammatory markers' expression TNF-α, iNOS (induced Nitric Oxide Synthase) and histopathological examination. Nanoparticles' treatment recorded a drastic reduction of inflammatory markers' expression. No marked sign of inflammation was also observed in histopathological analysis of the nanoparticles' treatment group. The present study suggests the possible utilisation of -mediated gold nanoparticles as an effective therapeutic agent against a prolonged inflammatory disease that progressively develops into cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349386 | PMC |
http://dx.doi.org/10.1007/s13205-021-02944-z | DOI Listing |
Mikrochim Acta
January 2025
Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya, Türkiye.
A lateral flow assay (LFA) has been developed that can be used in point-of-care (PoC) use for the sensitive determination of leptin hormone. The limit of detection value was 0.158 ng/mL and the limit of quantification value was 0.
View Article and Find Full Text PDFSci Rep
January 2025
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.
A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical and Computer Engineering, Aarhus University, Aarhus, 8200, Denmark.
Significant progress has been made through the optimization of modelling and device architecture solar cells has proven to be a valuable and highly effective approach for gaining a deeper understanding of the underlying physical processes in solar cells. Consequently, this research has conducted a two-dimensional (2D) perovskite solar cells (PSCs) simulation to develop an accurate model. The approach utilized in this study is based on the finite element method (FEM).
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
Background: Localized surface plasmon resonance (LSPR) sensor has drawn continuous attention to application of the detection of antibody, protein, virus, and bacteria. However, natural recognition molecules, such as antibody, which possess some properties, including low thermal stability, complicated operation and high price, uncontrollability of length and size and a tendency to accumulate easily on the surface of chip to reduce the sensitive of method. Furthermore, common blocking agents are not suitable for development of novel biosensors.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China. Electronic address:
Background: Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!