Purpose: Current injury surveillance efforts in agriculture are considerably hampered by the limited quantity of occupation or industry data in current health records. This has impeded efforts to develop more accurate injury burden estimates and has negatively impacted the prioritization of workplace health and safety in state and federal public health efforts. This paper describes the development of a Naïve Bayes machine learning algorithm to identify occupational injuries in agriculture using existing administrative data, specifically in pre-hospital care reports (PCR).

Methods: A Naïve Bayes machine learning algorithm was trained on PCR datasets from 2008-2010 from Maine and New Hampshire and tested on newer data from those states between 2011 and 2016. Further analyses were devoted to establishing the generalizability of the model across various states and various years. Dual visual inspection was used to verify the records subset by the algorithm.

Results: The Naïve Bayes machine learning algorithm reduced the volume of cases that required visual inspection by 69.5 percent over a keyword search strategy alone. Coders identified 341 true agricultural injury records (Case class = 1) (Maine 2011-2016, New Hampshire 2011-2015). In addition, there were 581 (Case class = 2 or 3) that were suspected to be agricultural acute/traumatic events, but lacked the necessary detail to make a certain distinction.

Conclusions: The application of the trained algorithm on newer data reduced the volume of records requiring visual inspection by two thirds over the previous keyword search strategy, making it a sustainable and cost-effective way to understand injury trends in agriculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322218PMC
http://dx.doi.org/10.1007/s13755-021-00161-9DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning algorithm
16
naïve bayes
12
bayes machine
12
visual inspection
12
algorithm identify
8
identify occupational
8
occupational injuries
8
injuries agriculture
8
pre-hospital care
8

Similar Publications

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.

View Article and Find Full Text PDF

Effect of terahertz radiation on cells and cellular structures.

Front Optoelectron

January 2025

Institute of Physics, Saratov State University, Saratov, 410012, Russia.

The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes.

View Article and Find Full Text PDF

Cognitive resilience (CR) describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer's disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model's residuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!