In this perspective, we will explain the concept of "friendly" yeasts for developing wine starters that do not suppress desirable native microbial flora at the initial steps of fermentation, as what usually happens with strains. Some non- strains might allow the development of yeast consortia with the native terroir microflora of grapes and its region. The positive contribution of non- yeasts was underestimated for decades. Avoiding them as spoilage strains and off-flavor producers was the main objective in winemaking. It is understandable, as in our experience after more than 30 years of wine yeast selection, it was shown that no more than 10% of the isolated native strains were positive contributors of superior flavors. Some species that systematically gave desirable flavors during these screening processes were and . In contrast to the latter, is an active fermentative species, and this fact helped to build an improved juice ecosystem, avoiding contaminations of aerobic bacteria and yeasts. Furthermore, this species has a complementary secondary metabolism with , increasing flavor complexity with benzenoid and phenylpropanoid synthetic pathways practically inexistent in conventional yeast starters. How does share the fermentation niche with other yeast strains? It might be due to the friendly conditions it creates, such as ideal low temperatures and low nitrogen demand during fermentation, reduced synthesis of medium-chain fatty acids, and a rich acetylation capacity of aromatic higher alcohols, well-known inhibitors of many yeasts. We will discuss here how inoculation of strains can give the winemaker an opportunity to develop ideal conditions for flavor expression of the microbial terroir without the risk of undesirable strains that can result from spontaneous yeast fermentations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371320PMC
http://dx.doi.org/10.3389/fmicb.2021.702093DOI Listing

Publication Analysis

Top Keywords

strains
6
yeasts
5
yeast
5
concept friendly
4
friendly yeasts
4
yeasts increase
4
increase autochthonous
4
autochthonous wine
4
wine flavor
4
flavor diversity
4

Similar Publications

The Impact of Selenium on the Physiological Activity of Yeast Cells ATCC 7090 and CCY 20-2-26.

Front Biosci (Landmark Ed)

January 2025

Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.

Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.

Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.

View Article and Find Full Text PDF

This study aimed to create a new recombinant virus by modifying the EV-A71 capsid protein, serving as a useful tool and model for studying human Enteroviruses. We developed a new screening method using EV-A71 pseudovirus particles to systematically identify suitable insertion sites and tag types in the VP1 capsid protein. The pseudovirus's infectivity and replication can be assessed by measuring postinfection luciferase signals.

View Article and Find Full Text PDF

Neurotropic Tick-Borne Flavivirus in Alpine Chamois (), Austria, 2017, Italy, 2023.

Viruses

January 2025

Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), 25124 Brescia, Italy.

The European subtype of tick-borne encephalitis virus (TBEV-Eur; species , family ) was the only tick-borne flavivirus present in central Europe known to cause neurologic disease in humans and several animal species. Here, we report a tick-borne flavivirus isolated from Alpine chamois () with encephalitis and attached ticks, present over a wide area in the Alps. Cases were detected in 2017 in Salzburg, Austria, and 2023 in Lombardy and Piedmont, Italy.

View Article and Find Full Text PDF

Phage M198 and Its Therapeutic Potential.

Viruses

January 2025

Laboratory of Molecular Biology, G. Eliava Institute of Bacteriophages, Microbiology and Virology, 0160 Tbilisi, Georgia.

The rapid worldwide spread of antibiotic resistance is quickly becoming an increasingly concerning problem for human healthcare. Non-antibiotic antibacterial agents are in high demand for many Gram-negative bacterial pathogens, including . -targeting phages are among the most promising alternative therapy options.

View Article and Find Full Text PDF

Inovirus-Encoded Peptides Induce Specific Toxicity in .

Viruses

January 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

is a common opportunistic pathogen associated with nosocomial infections. The primary treatment for infections typically involves antibiotics, which can lead to the emergence of multidrug-resistant strains. Therefore, there is a pressing need for safe and effective alternative methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!