Electrophysiological Correlates of Character Transposition in the Left and Right Visual Fields.

Front Psychol

Research Center for Language, Cognition and Language Application, Chongqing University, Chongqing, China.

Published: August 2021

This study examined the brain activity elicited by the hemispheric asymmetries and morpheme transposition of two-character Chinese words (canonical and transposed word) and pseudowords using event-related potentials (ERPs) with a dual-target rapid serial visual presentation (RSVP) task. Electrophysiological results showed facilitation effects for canonical words with centrally presented visual field (CVF) and right visual field (RVF) presentations but not with left visual field (LVF) presentations, as reflected by less negative N400 amplitudes. Moreover, more positive late positive component (LPC) amplitudes were observed for both canonical words and transposed words irrespective of the visual fields. More importantly, transposed words elicited a more negative N400 amplitude and a less positive LPC amplitude compared with the amplitudes elicited by canonical words for CVF and RVF presentations. For LVF presentations, transposed words elicited a less negative N250 amplitude compared with canonical words, and there was no significant difference between canonical words and transposed words in the N400 effect. Taken together, we concluded that character transposition facilitated the mapping of whole-word orthographic representation to semantic information in the LVF, as reflected by the N250 component, and such morpheme transposition influenced whole-word semantic processing in CVF and RVF presentations, as reflected by N400 and LPC components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371268PMC
http://dx.doi.org/10.3389/fpsyg.2021.684849DOI Listing

Publication Analysis

Top Keywords

canonical transposed
12
visual field
12
rvf presentations
12
character transposition
8
left visual
8
visual fields
8
morpheme transposition
8
lvf presentations
8
presentations reflected
8
negative n400
8

Similar Publications

Nanopore sequencing enables detection of DNA methylation at the same time as identification of canonical sequence. A recent study validated low-pass nanopore sequencing to accurately estimate global methylation levels in vertebrates with sequencing coverage as low as 0.01x.

View Article and Find Full Text PDF

Regulation of human interferon signaling by transposon exonization.

Cell

December 2024

BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA. Electronic address:

Innate immune signaling is essential for clearing pathogens and damaged cells and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2.

View Article and Find Full Text PDF

Alternative splicing enhances protein diversity in different ways, including through exonization of transposable elements (TEs). Recent transcriptomic analyses identified thousands of unannotated spliced transcripts with exonizing TEs, but their contribution to the proteome and biological relevance remains unclear. Here, we use transcriptome assembly, ribosome profiling, and proteomics to describe a population of 1,227 unannotated TE exonizing isoforms generated by mRNA splicing and recurrent in human populations.

View Article and Find Full Text PDF

Plants produce small RNAs that accomplish a surprisingly versatile number of functions. The heterogeneity of functions of plant small RNAs is evident at the tissue-specific level. In particular, in the last years, the study of their activity in reproductive tissues has unmasked an unexpected diversity in their biogenesis and roles.

View Article and Find Full Text PDF

Mutations in genes involved in DNA damage repair (DDR) often lead to premature aging syndromes. While recent evidence suggests that inflammation, alongside mutation accumulation and cell death, may drive disease phenotypes, its precise contribution to pathophysiology remains unclear. Here, by modeling Ataxia Telangiectasia (A-T) and Bloom Syndrome in the African turquoise killifish ( ), we replicate key phenotypes of DDR syndromes, including infertility, cytoplasmic DNA fragments, and reduced lifespan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!