Diffusion magnetic resonance imaging (MRI) is an increasingly popular technique in basic and clinical neuroscience. One promising application is to combine diffusion MRI with myelin maps from complementary MRI techniques such as multi-parameter mapping (MPM) to produce g-ratio maps that represent the relative myelination of axons and predict their conduction velocity. Statistical Parametric Mapping (SPM) can process both diffusion data and MPMs, making SPM the only widely accessible software that contains all the processing steps required to perform group analyses of g-ratio data in a common space. However, limitations have been identified in its method for reducing susceptibility-related distortion in diffusion data. More generally, susceptibility-related image distortion is often corrected by combining reverse phase-encoded images (blip-up and blip-down) using the arithmetic mean (AM), however, this can lead to blurred images. In this study we sought to (1) improve the susceptibility-related distortion correction for diffusion MRI data in SPM; (2) deploy an alternative approach to the AM to reduce image blurring in diffusion MRI data when combining blip-up and blip-down EPI data after susceptibility-related distortion correction; and (3) assess the benefits of these changes for g-ratio mapping. We found that the new processing pipeline, called consecutive Hyperelastic Susceptibility Artefact Correction (HySCO) improved distortion correction when compared to the standard approach in the ACID toolbox for SPM. Moreover, using a weighted average (WA) method to combine the distortion corrected data from each phase-encoding polarity achieved greater overlap of diffusion and more anatomically faithful structural white matter probability maps derived from minimally distorted multi-parameter maps as compared to the AM. Third, we showed that the consecutive HySCO WA performed better than the AM method when combined with multi-parameter maps to perform g-ratio mapping. These improvements mean that researchers can conveniently access a wide range of diffusion-related analysis methods within one framework because they are now available within the open-source ACID toolbox as part of SPM, which can be easily combined with other SPM toolboxes, such as the hMRI toolbox, to facilitate computation of myelin biomarkers that are necessary for g-ratio mapping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376472PMC
http://dx.doi.org/10.3389/fnins.2021.706473DOI Listing

Publication Analysis

Top Keywords

diffusion mri
16
susceptibility-related distortion
12
distortion correction
12
g-ratio mapping
12
image blurring
8
diffusion
8
blurring diffusion
8
data
8
epi data
8
diffusion data
8

Similar Publications

Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies.

Methods: This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is a leading cause of mortality and disability worldwide, with early and accurate diagnosis being critical for timely intervention and improved patient outcomes. This retrospective study aimed to assess the diagnostic performance of two advanced artificial intelligence (AI) models, Chat Generative Pre-trained Transformer (ChatGPT-4o) and Claude 3.5 Sonnet, in identifying AIS from diffusion-weighted imaging (DWI).

View Article and Find Full Text PDF

Diffusion weighted imaging (DWI) is used for monitoring purposes for lower-grade glioma (LGG). While the apparent diffusion coefficient (ADC) is clinically used, various DWI models have been developed to better understand the micro-environment. However, the validity of these models and how they relate to each other is currently unknown.

View Article and Find Full Text PDF

Background/objectives: Intraneural tumors (INTs) pose a diagnostic challenge, owing to their varied origins within nerve fascicles and their wide spectrum, which includes both benign and malignant forms. Accurate diagnosis and management of these tumors depends upon the skills of the radiologist in identifying key imaging features and correlating them with the patient's clinical symptoms and examination findings.

Methods: This comprehensive review systematically analyzes the various imaging features in the diagnosis of intraneural tumors, ranging from basic MR to advanced MR imaging techniques such as MR neurography (MRN), diffusion tensor imaging (DTI), and dynamic contrast-enhanced (DCE) MRI.

View Article and Find Full Text PDF

This study aimed to identify and analyze imaging and pathological features that differentiate liver metastases from primary liver cancer in patients with histopathological confirmation, and to evaluate the diagnostic accuracy of imaging modalities. This retrospective study included 137 patients who underwent liver biopsy or resection between 2016 and 2024, comprising 126 patients with liver metastases and 11 patients with primary liver cancer (hepatocellular carcinoma). Imaging features on contrast-enhanced MRI were evaluated, including lesion number, size, margins, enhancement patterns, presence of capsule, T1/T2 signal characteristics, diffusion-weighted imaging (DWI) signal, and portal vein thrombosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!