SARS-CoV-2, the new coronavirus causing COVID-19, is one of the most contagious disease of past decades. COVID-19 is different only in that everyone is encountering it for the first time during this pandemic. The world has gone from complete ignorance to a blitz of details in a matter of months. The foremost challenge that the scientific community faces is to understand the growth and transmission capability of the virus. As the world grapples with the global pandemic, people are spending more time than ever before living and working in the digital milieu, and the adoption of Artificial Intelligence (AI) is propelled to an unprecedented level especially as AI has already proven to play an important role in counteracting COVID-19. AI and Data Science are rapidly becoming important tools in clinical research, precision medicine, biomedical discovery and medical diagnostics. Machine learning (ML) and their subsets, such as deep learning, are also referred to as cognitive computing due to their foundational basis and relationship to cognition. To date, AI based techniques are helping epidemiologists in projecting the spread of virus, contact tracing, early detection, monitoring, social distancing, compiling data and training of healthcare workers. Beside AI, the use of telemedicine, mobile health or mHealth and the Internet of Things (IOT) is also emerging. These techniques have proven to be powerful tools in fighting against the pandemic because they provide strong support in pandemic prevention and control. The present study highlights applications and evaluations of these technologies, practices, and health delivery services as well as regulatory and ethical challenges regarding AI/ML-based medical products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343043PMC

Publication Analysis

Top Keywords

artificial intelligence
8
mobile health
8
pandemic
5
lessons learned
4
covid-19
4
learned covid-19
4
covid-19 pandemic
4
pandemic emphasizing
4
emphasizing emerging
4
emerging role
4

Similar Publications

Background: Segmentation models for clinical data experience severe performance degradation when trained on a single client from one domain and distributed to other clients from different domain. Federated Learning (FL) provides a solution by enabling multi-party collaborative learning without compromising the confidentiality of clients' private data.

Methods: In this paper, we propose a cross-domain FL method for Weakly Supervised Semantic Segmentation (FL-W3S) of white blood cells in microscopic images.

View Article and Find Full Text PDF

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Background: Recent advancements in artificial intelligence (AI) have changed the care processes in mental health, particularly in decision-making support for health care professionals and individuals with mental health problems. AI systems provide support in several domains of mental health, including early detection, diagnostics, treatment, and self-care. The use of AI systems in care flows faces several challenges in relation to decision-making support, stemming from technology, end-user, and organizational perspectives with the AI disruption of care processes.

View Article and Find Full Text PDF

Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.

View Article and Find Full Text PDF

Purpose: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evaluated whether an auxiliary data set could improve prediction performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!