An ecological approach to measuring synchronization abilities across the animal kingdom.

Philos Trans R Soc Lond B Biol Sci

Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6200 MD Maastricht, The Netherlands.

Published: October 2021

AI Article Synopsis

  • - This paper explores how different animals synchronize with environmental rhythms and emphasizes a new ecological approach to studying these behaviors.
  • - It highlights key factors such as temporal, physical, perceptual, and motivational constraints, which influence synchronization abilities across species.
  • - The authors suggest that understanding an animal's context and motivation can lead to discovering more species that can synchronize, advocating for experiments that are tailored to specific species and their natural environments.

Article Abstract

In this perspective paper, we focus on the study of synchronization abilities across the animal kingdom. We propose an ecological approach to studying nonhuman animal synchronization that begins from observations about when, how and why an animal might synchronize spontaneously with natural environmental rhythms. We discuss what we consider to be the most important, but thus far largely understudied, temporal, physical, perceptual and motivational constraints that must be taken into account when designing experiments to test synchronization in nonhuman animals. First and foremost, different species are likely to be sensitive to and therefore capable of synchronizing at different timescales. We also argue that it is fruitful to consider the latent flexibility of animal synchronization. Finally, we discuss the importance of an animal's motivational state for showcasing synchronization abilities. We demonstrate that the likelihood that an animal can successfully synchronize with an environmental rhythm is context-dependent and suggest that the list of species capable of synchronization is likely to grow when tested with ecologically honest, species-tuned experiments. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8380968PMC
http://dx.doi.org/10.1098/rstb.2020.0336DOI Listing

Publication Analysis

Top Keywords

synchronization abilities
12
ecological approach
8
abilities animal
8
animal kingdom
8
animal synchronization
8
animal synchronize
8
synchronization
7
animal
6
approach measuring
4
measuring synchronization
4

Similar Publications

Auditory rhythm encoding during the last trimester of human gestation: From tracking the basic beat to tracking hierarchical nested temporal structures.

J Neurosci

December 2024

Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France

Rhythm perception and synchronization to periodicity hold fundamental neurodevelopmental importance for language acquisition, musical behavior, and social communication. Rhythm is omnipresent in the fetal auditory world and newborns demonstrate sensitivity to auditory rhythmic cues. During the last trimester of gestation, the brain begins to respond to auditory stimulation and to code the auditory environment.

View Article and Find Full Text PDF

Unlabelled: Circadian rhythms in mammals arise from the spatiotemporal synchronization of ∼20,000 neuronal clocks in the Suprachiasmatic Nucleus (SCN). While anatomical, molecular, and genetic approaches have revealed diverse cell types and signaling mechanisms, the network wiring that enables SCN cells to communicate and synchronize remains unclear. To overcome the challenges of revealing functional connectivity from fixed tissue, we developed MITE (Mutual Information & Transfer Entropy), an information theory approach that infers directed cell-cell connections with high fidelity.

View Article and Find Full Text PDF

Personalized Multi-Epitope Nanovaccine Unlocks B Cell-Mediated Multiple Pathways of Antitumor Immunity.

Adv Mater

December 2024

State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.

B lymphocytes have emerged as an important immune-regulating target. Inoculation with tumor cell membrane-derived vaccines is a promising strategy to activate B cells, yet their efficiency is limited due to lack of costimulatory molecules. To amplify B cell responses against tumor, herein, a spatiotemporally-synchronized antigen-adjuvant integrated nanovaccine, termed as CM-CpG-aCD40, is constructed by conjugating the immune stimulative CpG oligonucleotide and the anti-CD40 antibody (aCD40) onto the membrane vesicles derived from triple negative breast cancer cells.

View Article and Find Full Text PDF

The chemotactic response of Caenorhabditis elegans represents a promising tool for the early detection of cancer.

Discov Oncol

December 2024

Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia.

The nematode Caenorhabditis elegans, with its highly sensitive olfactory system, has emerged as a promising tool for testing chemotaxis. In the field of cancer diagnostics, there is a growing interest in the development of non-invasive screening methods for the detection of volatile organic compounds in a patient's urine. The objective of this study was to contribute to the existing body of knowledge by evaluating the ability of a Caenorhabditis elegans-based chemotaxis assay to discriminate between urine samples from healthy individuals and patients diagnosed with breast or colon cancer.

View Article and Find Full Text PDF

A computational and multi-brain signature for aberrant social coordination in schizophrenia.

Prog Neuropsychopharmacol Biol Psychiatry

December 2024

Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China. Electronic address:

Social functioning impairment is a core symptom of schizophrenia (SCZ). Yet, the computational and neural mechanisms of social coordination in SCZ under real-time and naturalistic settings are poorly understood. Here, we instructed patients with SCZ to coordinate with a healthy control (HC) in a joint finger-tapping task, during which their brain activity was measured by functional near-infrared spectroscopy simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!