Humans perceive and spontaneously move to one or several levels of periodic pulses (a meter, for short) when listening to musical rhythm, even when the sensory input does not provide prominent periodic cues to their temporal location. Here, we review a multi-levelled framework to understanding how external rhythmic inputs are mapped onto internally represented metric pulses. This mapping is studied using an approach to quantify and directly compare representations of metric pulses in signals corresponding to sensory inputs, neural activity and behaviour (typically body movement). Based on this approach, recent empirical evidence can be drawn together into a conceptual framework that unpacks the phenomenon of meter into four levels. Each level highlights specific functional processes that critically enable and shape the mapping from sensory input to internal meter. We discuss the nature, constraints and neural substrates of these processes, starting with fundamental mechanisms investigated in macaque monkeys that enable basic forms of mapping between simple rhythmic stimuli and internally represented metric pulse. We propose that human evolution has gradually built a robust and flexible system upon these fundamental processes, allowing more complex levels of mapping to emerge in musical behaviours. This approach opens promising avenues to understand the many facets of rhythmic behaviours across individuals and species. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8380981PMC
http://dx.doi.org/10.1098/rstb.2020.0325DOI Listing

Publication Analysis

Top Keywords

framework understanding
8
sensory input
8
internally represented
8
represented metric
8
metric pulses
8
mapping
5
mapping sound
4
sound brain
4
brain behaviour
4
behaviour four-level
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!