We report observations of quasiparticle pair production by a modulational instability in an atomic superfluid and present a measurement technique that enables direct characterization of quasiparticle quantum entanglement. By quenching the atomic interaction to attractive and then back to weakly repulsive, we produce correlated quasiparticles and monitor their evolution in a superfluid through evaluating the in situ density noise power spectrum, which essentially measures a "homodyne" interference between ground-state atoms and quasiparticles of opposite momenta. We observe large amplitude growth in the power spectrum and subsequent coherent oscillations in a wide spatial frequency band within our resolution limit, demonstrating coherent quasiparticle generation and evolution. The spectrum is observed to oscillate below a quantum limit set by the Peres-Horodecki separability criterion of continuous-variable states, thereby confirming quantum entanglement between interaction quench-induced quasiparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.060404DOI Listing

Publication Analysis

Top Keywords

quantum entanglement
12
quasiparticle pair
8
pair production
8
power spectrum
8
quantum
5
observation quasiparticle
4
production quantum
4
entanglement atomic
4
atomic quantum
4
quantum gases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!