A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Superradiance and Subradiance due to Quantum Interference of Entangled Free Electrons. | LitMetric

When multiple quantum emitters radiate, their emission rate may be enhanced or suppressed due to collective interference in a process known as super- or subradiance. Such processes are well known to occur also in light emission from free electrons, known as coherent cathodoluminescence. Unlike atomic systems, free electrons have an unbounded energy spectrum, and, thus, all their emission mechanisms rely on electron recoil, in addition to the classical properties of the dielectric medium. To date, all experimental and theoretical studies of super- and subradiance from free electrons assumed only classical correlations between particles. However, dependence on quantum correlations, such as entanglement between free electrons, has not been studied. Recent advances in coherent shaping of free-electron wave functions motivate the investigation of such quantum regimes of super- and subradiance. In this Letter, we show how a pair of coincident path-entangled electrons can demonstrate either super- or subradiant light emission, depending on the two-particle wave function. By choosing different free-electron Bell states, the spectrum and emission pattern of the light can be reshaped, in a manner that cannot be accounted for by a classical mixed state. We show these results for light emission in any optical medium and discuss their generalization to many-body quantum states. Our findings suggest that light emission can be sensitive to the explicit quantum state of the emitting matter wave and possibly serve as a nondestructive measurement scheme for measuring the quantum state of many-body systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.060403DOI Listing

Publication Analysis

Top Keywords

free electrons
20
light emission
16
super- subradiance
12
spectrum emission
8
quantum state
8
quantum
7
emission
7
electrons
6
free
5
light
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!