A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Normalizing Flows for Microscopic Many-Body Calculations: An Application to the Nuclear Equation of State. | LitMetric

Normalizing Flows for Microscopic Many-Body Calculations: An Application to the Nuclear Equation of State.

Phys Rev Lett

Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA.

Published: August 2021

Normalizing flows are a class of machine learning models used to construct a complex distribution through a bijective mapping of a simple base distribution. We demonstrate that normalizing flows are particularly well suited as a Monte Carlo integration framework for quantum many-body calculations that require the repeated evaluation of high-dimensional integrals across smoothly varying integrands and integration regions. As an example, we consider the finite-temperature nuclear equation of state. An important advantage of normalizing flows is the ability to build highly expressive models of the target integrand, which we demonstrate enables precise evaluations of the nuclear free energy and its derivatives. Furthermore, we show that a normalizing flow model trained on one target integrand can be used to efficiently calculate related integrals when the temperature, density, or nuclear force is varied. This work will support future efforts to build microscopic equations of state for numerical simulations of supernovae and neutron star mergers that employ state-of-the-art nuclear forces and many-body methods.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.062701DOI Listing

Publication Analysis

Top Keywords

normalizing flows
16
many-body calculations
8
nuclear equation
8
equation state
8
target integrand
8
normalizing
5
nuclear
5
flows microscopic
4
microscopic many-body
4
calculations application
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!